Transseries and Real Differential Algebra
Transseries are formal objects constructed from an infinitely large variable x and the reals using infinite summation, exponentiation and logarithm. They are suitable for modeling "strongly monotonic" or "tame" asymptotic solutions to differential equations and find their origin...
Κύριος συγγραφέας: | Hoeven, Joris van der (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2006.
|
Σειρά: | Lecture Notes in Mathematics,
1888 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Transseries and Real Differential Algebra
ανά: Hoeven, Joris
Έκδοση: (2006) -
Exploring the Riemann Zeta Function 190 years from Riemann's Birth /
Έκδοση: (2017) -
Bifurcation Theory of Functional Differential Equations
ανά: Guo, Shangjiang, κ.ά.
Έκδοση: (2013) -
Stability and Bifurcation Theory for Non-Autonomous Differential Equations Cetraro, Italy 2011, Editors: Russell Johnson, Maria Patrizia Pera /
ανά: Capietto, Anna, κ.ά.
Έκδοση: (2013) -
Recent Advances in Delay Differential and Difference Equations
Έκδοση: (2014)