Projective and Cayley-Klein Geometries

Projective geometry, and the Cayley-Klein geometries embedded into it, were originated in the 19th century. It is one of the foundations of algebraic geometry and has many applications to differential geometry. The book presents a systematic introduction to projective geometry as based on the notion...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Onishchik, Arkady L. (Συγγραφέας), Sulanke, Rolf (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02339nam a22004335i 4500
001 978-3-540-35645-5
003 DE-He213
005 20150520192331.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540356455  |9 978-3-540-35645-5 
024 7 |a 10.1007/3-540-35645-2  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Onishchik, Arkady L.  |e author. 
245 1 0 |a Projective and Cayley-Klein Geometries  |h [electronic resource] /  |c by Arkady L. Onishchik, Rolf Sulanke. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XVI, 434 p. 69 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
520 |a Projective geometry, and the Cayley-Klein geometries embedded into it, were originated in the 19th century. It is one of the foundations of algebraic geometry and has many applications to differential geometry. The book presents a systematic introduction to projective geometry as based on the notion of vector space, which is the central topic of the first chapter. The second chapter covers the most important classical geometries which are systematically developed following the principle founded by Cayley and Klein, which rely on distinguishing an absolute and then studying the resulting invariants of geometric objects. An appendix collects brief accounts of some fundamental notions from algebra and topology with corresponding references to the literature. This self-contained introduction is a must for students, lecturers and researchers interested in projective geometry. . 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
700 1 |a Sulanke, Rolf.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540356448 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/3-540-35645-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)