Analytic Capacity, Rectifiability, Menger Curvature and Cauchy Integral

Based on a graduate course given by the author at Yale University this book deals with complex analysis (analytic capacity), geometric measure theory (rectifiable and uniformly rectifiable sets) and harmonic analysis (boundedness of singular integral operators on Ahlfors-regular sets). In particular...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pajot, Hervé M. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Mathematics, 1799
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03306nam a2200565 4500
001 978-3-540-36074-2
003 DE-He213
005 20191028072738.0
007 cr nn 008mamaa
008 100806s2002 gw | s |||| 0|eng d
020 |a 9783540360742  |9 978-3-540-36074-2 
024 7 |a 10.1007/b84244  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Pajot, Hervé M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analytic Capacity, Rectifiability, Menger Curvature and Cauchy Integral  |h [electronic resource] /  |c by Hervé M. Pajot. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a VIII, 119 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1799 
505 0 |a Preface -- Notations and conventions -- Some geometric measures theory -- Jones' traveling salesman theorem -- Menger curvature -- The Cauchy singular integral operator on Ahlfors-regular sets -- Analytic capacity and the Painlevé Problem -- The Denjoy and Vitushkin conjectures -- The capacity $gamma (+)$ and the Painlevé Problem -- Bibliography -- Index. 
520 |a Based on a graduate course given by the author at Yale University this book deals with complex analysis (analytic capacity), geometric measure theory (rectifiable and uniformly rectifiable sets) and harmonic analysis (boundedness of singular integral operators on Ahlfors-regular sets). In particular, these notes contain a description of Peter Jones' geometric traveling salesman theorem, the proof of the equivalence between uniform rectifiability and boundedness of the Cauchy operator on Ahlfors-regular sets, the complete proofs of the Denjoy conjecture and the Vitushkin conjecture (for the latter, only the Ahlfors-regular case) and a discussion of X. Tolsa's solution of the Painlevé problem. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Geometry. 
650 0 |a Measure theory. 
650 0 |a Functions of complex variables. 
650 0 |a Fourier analysis. 
650 1 4 |a Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12007 
650 2 4 |a Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21006 
650 2 4 |a Measure and Integration.  |0 http://scigraph.springernature.com/things/product-market-codes/M12120 
650 2 4 |a Functions of a Complex Variable.  |0 http://scigraph.springernature.com/things/product-market-codes/M12074 
650 2 4 |a Fourier Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12058 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540000013 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1799 
856 4 0 |u https://doi.org/10.1007/b84244  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)