Stability Estimates for Hybrid Coupled Domain Decomposition Methods

Domain decomposition methods are a well established tool for an efficient numerical solution of partial differential equations, in particular for the coupling of different model equations and of different discretization methods. Based on the approximate solution of local boundary value problems eit...

Full description

Bibliographic Details
Main Author: Steinbach, Olaf (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Edition:1st ed. 2003.
Series:Lecture Notes in Mathematics, 1809
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03367nam a2200529 4500
001 978-3-540-36250-0
003 DE-He213
005 20191026022250.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783540362500  |9 978-3-540-36250-0 
024 7 |a 10.1007/b80164  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Steinbach, Olaf.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stability Estimates for Hybrid Coupled Domain Decomposition Methods  |h [electronic resource] /  |c by Olaf Steinbach. 
250 |a 1st ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a VI, 126 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1809 
505 0 |a Preliminaries -- Sobolev Spaces: Saddle Point Problems; Finite Element Spaces; Projection Operators; Quasi Interpolation Operators -- Stability Results: Piecewise Linear Elements; Dual Finite Element Spaces; Higher Order Finite Element Spaces; Biorthogonal Basis Functions -- The Dirichlet-Neumann Map for Elliptic Problems: The Steklov-Poincare Operator; The Newton Potential; Approximation by Finite Element Methods; Approximation by Boundary Element Methods -- Mixed Discretization Schemes: Variational Methods with Approximate Steklov-Poincare Operators; Lagrange Multiplier Methods -- Hybrid Coupled Domain Decomposition Methods: Dirichlet Domain Decomposition Methods; A Two-Level Method; Three-Field Methods; Neumann Domain Decomposition Methods;Numerical Results; Concluding Remarks -- References. 
520 |a  Domain decomposition methods are a well established tool for an efficient numerical solution of partial differential equations, in particular for the coupling of different model equations and of different discretization methods. Based on the approximate solution of local boundary value problems either by finite or boundary element methods, the global problem is reduced to an operator equation on the skeleton of the domain decomposition. Different variational formulations then lead to hybrid domain decomposition methods. . 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Partial differential equations. 
650 1 4 |a Applications of Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M13003 
650 2 4 |a Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M14050 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540002772 
776 0 8 |i Printed edition:  |z 9783662174050 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1809 
856 4 0 |u https://doi.org/10.1007/b80164  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)