Robust Adaptation to Non-Native Accents in Automatic Speech Recognition

Speech recognition technology is being increasingly employed in human-machine interfaces. A remaining problem however is the robustness of this technology to non-native accents, which still cause considerable difficulties for current systems. In this book, methods to overcome this problem are descri...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Goronzy, Silke (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Artificial Intelligence ; 2560
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03454nam a2200565 4500
001 978-3-540-36290-6
003 DE-He213
005 20191028202811.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540362906  |9 978-3-540-36290-6 
024 7 |a 10.1007/3-540-36290-8  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Goronzy, Silke.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Robust Adaptation to Non-Native Accents in Automatic Speech Recognition  |h [electronic resource] /  |c by Silke Goronzy. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a XI, 146 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 2560 
505 0 |a ASR:AnOverview -- Pre-processing of the Speech Data -- Stochastic Modelling of Speech -- Knowledge Bases of an ASR System -- Speaker Adaptation -- Confidence Measures -- Pronunciation Adaptation -- Future Work -- Summary -- Databases and Experimental Settings -- MLLR Results -- Phoneme Inventory. 
520 |a Speech recognition technology is being increasingly employed in human-machine interfaces. A remaining problem however is the robustness of this technology to non-native accents, which still cause considerable difficulties for current systems. In this book, methods to overcome this problem are described. A speaker adaptation algorithm that is capable of adapting to the current speaker with just a few words of speaker-specific data based on the MLLR principle is developed and combined with confidence measures that focus on phone durations as well as on acoustic features. Furthermore, a specific pronunciation modelling technique that allows the automatic derivation of non-native pronunciations without using non-native data is described and combined with the previous techniques to produce a robust adaptation to non-native accents in an automatic speech recognition system. 
650 0 |a Artificial intelligence. 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a Mathematical logic. 
650 0 |a User interfaces (Computer systems). 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 http://scigraph.springernature.com/things/product-market-codes/I16048 
650 2 4 |a User Interfaces and Human Computer Interaction.  |0 http://scigraph.springernature.com/things/product-market-codes/I18067 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662205549 
776 0 8 |i Printed edition:  |z 9783540003250 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 2560 
856 4 0 |u https://doi.org/10.1007/3-540-36290-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)