Singular Coverings of Toposes

The self-contained theory of certain singular coverings of toposes called complete spreads, that is presented in this volume, is a field of interest to topologists working in knot theory, as well as to various categorists. It extends the complete spreads in topology due to R. H. Fox (1957) but, unli...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bunge, Marta (Συγγραφέας), Funk, Jonathon (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Lecture Notes in Mathematics, 1890
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03485nam a22005535i 4500
001 978-3-540-36360-6
003 DE-He213
005 20151123195223.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540363606  |9 978-3-540-36360-6 
024 7 |a 10.1007/3-540-36359-9  |2 doi 
040 |d GrThAP 
050 4 |a QA169 
072 7 |a PBC  |2 bicssc 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.6  |2 23 
100 1 |a Bunge, Marta.  |e author. 
245 1 0 |a Singular Coverings of Toposes  |h [electronic resource] /  |c by Marta Bunge, Jonathon Funk. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XII, 225 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1890 
505 0 |a Distributions and Complete Spreads -- Lawvere Distributions on Toposes -- Complete Spread Maps of Toposes -- The Spread and Completeness Conditions -- An Axiomatic Theory of Complete Spreads -- Completion KZ-Monads -- Complete Spreads as Discrete M-fibrations -- Closed and Linear KZ-Monads -- Aspects of Distributions and Complete Spreads -- Lattice-Theoretic Aspects -- Localic and Algebraic Aspects -- Topological Aspects. 
520 |a The self-contained theory of certain singular coverings of toposes called complete spreads, that is presented in this volume, is a field of interest to topologists working in knot theory, as well as to various categorists. It extends the complete spreads in topology due to R. H. Fox (1957) but, unlike the classical theory, it emphasizes an unexpected connection with topos distributions in the sense of F. W. Lawvere (1983). The constructions, though often motivated by classical theories, are sometimes quite different from them. Special classes of distributions and of complete spreads, inspired respectively by functional analysis and topology, are studied. Among the former are the probability distributions; the branched coverings are singled out amongst the latter. This volume may also be used as a textbook for an advanced one-year graduate course introducing topos theory with an emphasis on geometric applications. Throughout the authors emphasize open problems. Several routine proofs are left as exercises, but also as ‘exercises’ the reader will find open questions for possible future work in a variety of topics in mathematics that can profit from a categorical approach. 
650 0 |a Mathematics. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Algebra. 
650 0 |a Ordered algebraic structures. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
700 1 |a Funk, Jonathon.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540363590 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1890 
856 4 0 |u http://dx.doi.org/10.1007/3-540-36359-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)