Cardinalities of Fuzzy Sets

Counting is one of the basic elementary mathematical activities. It comes with two complementary aspects: to determine the number of elements of a set - and to create an ordering between the objects of counting just by counting them over. For finite sets of objects these two aspects are realized by...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wygralak, Maciej (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Studies in Fuzziness and Soft Computing, 118
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04532nam a2200565 4500
001 978-3-540-36382-8
003 DE-He213
005 20191022023038.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783540363828  |9 978-3-540-36382-8 
024 7 |a 10.1007/978-3-540-36382-8  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT008000  |2 bisacsh 
072 7 |a PBD  |2 thema 
082 0 4 |a 511.1  |2 23 
100 1 |a Wygralak, Maciej.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Cardinalities of Fuzzy Sets  |h [electronic resource] /  |c by Maciej Wygralak. 
250 |a 1st ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a XIV, 195 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 118 
505 0 |a 1. Triangular Operations and Negations (Allegro) -- 1.1. Triangular Norms and Conorms -- 1.2. Negations -- 1.3. Associated Triangular Operations -- 1.4. Archimedean Triangular Operations -- 1.5. Induced Negations and Complementary Triangular Operations -- 1.6. Implications Induced by Triangular Norms -- 2. Fuzzy Sets (Andante spianato) -- 2.1. The Concept of a Fuzzy Set -- 2.2. Operations on Fuzzy Sets -- 2.3. Generalized Operations -- 2.4. Other Elements of the Language of Fuzzy Sets -- 2.5. Towards Cardinalities of Fuzzy Sets -- 3. Scalar Cardinalities of Fuzzy Sets (Scherzo) -- 3.1. An Axiomatic Viewpoint -- 3.2. Cardinality Patterns -- 3.3. Valuation Property and Subadditivity -- 3.4. Cartesian Product Rule and Complementarity -- 3.5. On the Fulfilment of a Group of the Properties -- 4. Generalized Cardinals with Triangular Norms (Rondeau à la polonaise) -- 4.1. Generalized FGCounts -- 4.2. Generalized FLCounts -- 4.3. Generalized FECounts -- List of Symbols. 
520 |a Counting is one of the basic elementary mathematical activities. It comes with two complementary aspects: to determine the number of elements of a set - and to create an ordering between the objects of counting just by counting them over. For finite sets of objects these two aspects are realized by the same type of num­ bers: the natural numbers. That these complementary aspects of the counting pro­ cess may need different kinds of numbers becomes apparent if one extends the process of counting to infinite sets. As general tools to determine numbers of elements the cardinals have been created in set theory, and set theorists have in parallel created the ordinals to count over any set of objects. For both types of numbers it is not only counting they are used for, it is also the strongly related process of calculation - especially addition and, derived from it, multiplication and even exponentiation - which is based upon these numbers. For fuzzy sets the idea of counting, in both aspects, looses its naive foundation: because it is to a large extent founded upon of the idea that there is a clear distinc­ tion between those objects which have to be counted - and those ones which have to be neglected for the particular counting process. 
650 0 |a Discrete mathematics. 
650 0 |a Computational complexity. 
650 0 |a Computer science-Mathematics. 
650 0 |a Group theory. 
650 0 |a System theory. 
650 1 4 |a Discrete Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M29000 
650 2 4 |a Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/T11022 
650 2 4 |a Math Applications in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17044 
650 2 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
650 2 4 |a Systems Theory, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/M13070 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642535147 
776 0 8 |i Printed edition:  |z 9783540003373 
776 0 8 |i Printed edition:  |z 9783642535130 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 118 
856 4 0 |u https://doi.org/10.1007/978-3-540-36382-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)