Cardinalities of Fuzzy Sets
Counting is one of the basic elementary mathematical activities. It comes with two complementary aspects: to determine the number of elements of a set - and to create an ordering between the objects of counting just by counting them over. For finite sets of objects these two aspects are realized by...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2003.
|
Έκδοση: | 1st ed. 2003. |
Σειρά: | Studies in Fuzziness and Soft Computing,
118 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. Triangular Operations and Negations (Allegro)
- 1.1. Triangular Norms and Conorms
- 1.2. Negations
- 1.3. Associated Triangular Operations
- 1.4. Archimedean Triangular Operations
- 1.5. Induced Negations and Complementary Triangular Operations
- 1.6. Implications Induced by Triangular Norms
- 2. Fuzzy Sets (Andante spianato)
- 2.1. The Concept of a Fuzzy Set
- 2.2. Operations on Fuzzy Sets
- 2.3. Generalized Operations
- 2.4. Other Elements of the Language of Fuzzy Sets
- 2.5. Towards Cardinalities of Fuzzy Sets
- 3. Scalar Cardinalities of Fuzzy Sets (Scherzo)
- 3.1. An Axiomatic Viewpoint
- 3.2. Cardinality Patterns
- 3.3. Valuation Property and Subadditivity
- 3.4. Cartesian Product Rule and Complementarity
- 3.5. On the Fulfilment of a Group of the Properties
- 4. Generalized Cardinals with Triangular Norms (Rondeau à la polonaise)
- 4.1. Generalized FGCounts
- 4.2. Generalized FLCounts
- 4.3. Generalized FECounts
- List of Symbols.