Geometric Aspects of Functional Analysis Israel Seminar 2001-2002 /

The proceedings of the Israeli GAFA seminar on Geometric Aspect of Functional Analysis during the years 2001-2002 follow the long tradition of the previous volumes. They continue to reflect the general trends of the Theory. Several papers deal with the slicing problem and its relatives. Some deal wi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Milman, Vitali D. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Schechtman, Gideon (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Lecture Notes in Mathematics, 1807
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04559nam a2200541 4500
001 978-3-540-36428-3
003 DE-He213
005 20191029041542.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783540364283  |9 978-3-540-36428-3 
024 7 |a 10.1007/b10415  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
245 1 0 |a Geometric Aspects of Functional Analysis  |h [electronic resource] :  |b Israel Seminar 2001-2002 /  |c edited by Vitali D. Milman, Gideon Schechtman. 
250 |a 1st ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a VIII, 432 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1807 
505 0 |a Preface -- F. Barthe, M. Csörnyei and A. Naor: A Note on Simultaneous Polar and Cartesian Decomposition -- A. Barvinok: Approximating a Norm by a Polynomial -- S.G. Bobkov: Concentration of Distributions of the Weighted Sums with Bernoullian Coefficients -- S.G. Bobkov: Spectral Gap and Concentration for Some Spherically Symmetric Probability Measures -- S.G. Bobkov and A. Koldobsky: On the Central Limit Property of Convex Bodies -- S.G. Bobkov and F.L. Nazarov: On Convex Bodies and Log-Concave Probability Measures with Unconditional Basis -- J. Bourgain: Random Lattice Schrödinger Operators with Decaying Potential: Some Higher Dimensional Phenomena -- J. Bourgain: On Long-Time Behaviour of Solutions of Linear Schrödinger Equations with Smooth Time-Dependent Potential -- J. Bourgain: On the Isotropy-Constant Problem for 'PSI-2'-Bodies -- E.D. Gluskin: On the Sum of Intervals -- E. Gluskin and V. Milman: Note on the Geometric-Arithmetic Mean Inequality -- O. Guédon and A. Zvavitch: Supremum of a Process in Terms of Trees -- O. Maleva: Point Preimages under Ball Non-Collapsing Mappings -- V. Milman and R. Wagner: Some Remarks on a Lemma of Ran Raz -- F. Nazarov: On the Maximal Perimeter of a Convex Set in R^n with Respect to a Gaussian Measure -- K. Oleszkiewicz: On p-Pseudostable Random Variables, Rosenthal Spaces and l_p^n Ball Slicing -- G. Paouris: Psi_2-Estimates for Linear Functionals on Zonoids -- G. Schechtman, N. Tomczak-Jaegermann and R. Vershynin: Maximal l_p^n-Structures in Spaces with Extremal Parameters -- C. Schütt and E. Werner: Polytopes with Vertices Chosen Randomly from the Boundary of a Convex Body -- Seminar Talks (with Related Workshop and Conference Talks). 
520 |a The proceedings of the Israeli GAFA seminar on Geometric Aspect of Functional Analysis during the years 2001-2002 follow the long tradition of the previous volumes. They continue to reflect the general trends of the Theory. Several papers deal with the slicing problem and its relatives. Some deal with the concentration phenomenon and related topics. In many of the papers there is a deep interplay between Probability and Convexity. The volume contains also a profound study on approximating convex sets by randomly chosen polytopes and its relation to floating bodies, an important subject in Classical Convexity Theory. All the papers of this collection are original research papers. 
650 0 |a Functional analysis. 
650 0 |a Convex geometry . 
650 0 |a Discrete geometry. 
650 0 |a Probabilities. 
650 1 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
650 2 4 |a Convex and Discrete Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21014 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
700 1 |a Milman, Vitali D.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Schechtman, Gideon.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540004851 
776 0 8 |i Printed edition:  |z 9783662205044 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1807 
856 4 0 |u https://doi.org/10.1007/b10415  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)