Machine Learning: ECML 2002 13th European Conference on Machine Learning, Helsinki, Finland, August 19-23, 2002. Proceedings /

This book constitutes the refereed preceedings of the 13th European Conference on Machine Learning, ECML 2002, held in Helsinki, Finland in August 2002. The 41 revised full papers presented together with 4 invited contributions were carefully reviewed and selected from numerous submissions. Among th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Elomaa, Tapio (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Mannila, Heikki (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Toivonen, Hannu (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Lecture Notes in Artificial Intelligence ; 2430
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05840nam a2200541 4500
001 978-3-540-36755-0
003 DE-He213
005 20191028101919.0
007 cr nn 008mamaa
008 121227s2002 gw | s |||| 0|eng d
020 |a 9783540367550  |9 978-3-540-36755-0 
024 7 |a 10.1007/3-540-36755-1  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Machine Learning: ECML 2002  |h [electronic resource] :  |b 13th European Conference on Machine Learning, Helsinki, Finland, August 19-23, 2002. Proceedings /  |c edited by Tapio Elomaa, Heikki Mannila, Hannu Toivonen. 
250 |a 1st ed. 2002. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2002. 
300 |a XIV, 538 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 2430 
505 0 |a Contributed Papers -- Convergent Gradient Ascent in General-Sum Games -- Revising Engineering Models: Combining Computational Discovery with Knowledge -- Variational Extensions to EM and Multinomial PCA -- Learning and Inference for Clause Identification -- An Empirical Study of Encoding Schemes and Search Strategies in Discovering Causal Networks -- Variance Optimized Bagging -- How to Make AdaBoost.M1 Work for Weak Base Classifiers by Changing Only One Line of the Code -- Sparse Online Greedy Support Vector Regression -- Pairwise Classification as an Ensemble Technique -- RIONA: A Classifier Combining Rule Induction and k-NN Method with Automated Selection of Optimal Neighbourhood -- Using Hard Classifiers to Estimate Conditional Class Probabilities -- Evidence that Incremental Delta-Bar-Delta Is an Attribute-Efficient Linear Learner -- Scaling Boosting by Margin-Based Inclusion of Features and Relations -- Multiclass Alternating Decision Trees -- Possibilistic Induction in Decision-Tree Learning -- Improved Smoothing for Probabilistic Suffix Trees Seen as Variable Order Markov Chains -- Collaborative Learning of Term-Based Concepts for Automatic Query Expansion -- Learning to Play a Highly Complex Game from Human Expert Games -- Reliable Classifications with Machine Learning -- Robustness Analyses of Instance-Based Collaborative Recommendation -- iBoost: Boosting Using an instance-Based Exponential Weighting Scheme -- Towards a Simple Clustering Criterion Based on Minimum Length Encoding -- Class Probability Estimation and Cost-Sensitive Classification Decisions -- On-Line Support Vector Machine Regression -- Q-Cut-Dynamic Discovery of Sub-goals in Reinforcement Learning -- A Multistrategy Approach to the Classification of Phases in Business Cycles -- A Robust Boosting Algorithm -- Case Exchange Strategies in Multiagent Learning -- Inductive Confidence Machines for Regression -- Macro-Operators in Multirelational Learning: A Search-Space Reduction Technique -- Propagation of Q-values in Tabular TD(?) -- Transductive Confidence Machines for Pattern Recognition -- Characterizing Markov Decision Processes -- Phase Transitions and Stochastic Local Search in k-Term DNF Learning -- Discriminative Clustering: Optimal Contingency Tables by Learning Metrics -- Boosting Density Function Estimators -- Ranking with Predictive Clustering Trees -- Support Vector Machines for Polycategorical Classification -- Learning Classification with Both Labeled and Unlabeled Data -- An Information Geometric Perspective on Active Learning -- Stacking with an Extended Set of Meta-level Attributes and MLR -- Invited Papers -- Finding Hidden Factors Using Independent Component Analysis -- Reasoning with Classifiers -- A Kernel Approach for Learning from almost Orthogonal Patterns -- Learning with Mixture Models: Concepts and Applications. 
520 |a This book constitutes the refereed preceedings of the 13th European Conference on Machine Learning, ECML 2002, held in Helsinki, Finland in August 2002. The 41 revised full papers presented together with 4 invited contributions were carefully reviewed and selected from numerous submissions. Among the topics covered are computational discovery, search strategies, Classification, support vector machines, kernel methods, rule induction, linear learning, decision tree learning, boosting, collaborative learning, statistical learning, clustering, instance-based learning, reinforcement learning, multiagent learning, multirelational learning, Markov decision processes, active learning, etc. 
650 0 |a Artificial intelligence. 
650 0 |a Algorithms. 
650 0 |a Mathematical logic. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 http://scigraph.springernature.com/things/product-market-codes/I16048 
700 1 |a Elomaa, Tapio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Mannila, Heikki.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Toivonen, Hannu.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662172230 
776 0 8 |i Printed edition:  |z 9783540440369 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 2430 
856 4 0 |u https://doi.org/10.1007/3-540-36755-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)