Algebraic Cobordism

Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. Surprisingly, this theo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Levine, Marc (Συγγραφέας), Morel, Fabien (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03841nam a22005535i 4500
001 978-3-540-36824-3
003 DE-He213
005 20151204183712.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540368243  |9 978-3-540-36824-3 
024 7 |a 10.1007/3-540-36824-8  |2 doi 
040 |d GrThAP 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.2  |2 23 
100 1 |a Levine, Marc.  |e author. 
245 1 0 |a Algebraic Cobordism  |h [electronic resource] /  |c by Marc Levine, Fabien Morel. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XII, 246 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Introduction -- I. Cobordism and oriented cohomology -- 1.1. Oriented cohomology theories. 1.2. Algebraic cobordism. 1.3. Relations with complex cobordism. - II. The definition of algebraic cobordism. 2.1. Oriented Borel-Moore functions. 2.2. Oriented functors of geometric type. 2.3. Some elementary properties. 2.4. The construction of algebraic cobordism. 2.5. Some computations in algebraic cobordism -- III. Fundamental properties of algebraic cobordism. 3.1. Divisor classes. 3.2. Localization. 3.3. Transversality. 3.4. Homotopy invariance. 3.5. The projective bundle formula. 3.6. The extended homotopy property. IV. Algebraic cobordism and the Lazard ring. 4.1. Weak homology and Chern classes. 4.2. Algebraic cobordism and K-theory. 4.3. The cobordism ring of a point. 4.4. Degree formulas. 4.5. Comparison with the Chow groups. V. Oriented Borel-Moore homology. 5.1. Oriented Borel-Moore homology theories. 5.2. Other oriented theories -- VI. Functoriality. 6.1. Refined cobordism. 6.2. Intersection with a pseudo-divisor. 6.3. Intersection with a pseudo-divisor II. 6.4. A moving lemma. 6.5. Pull-back for l.c.i. morphisms. 6.6. Refined pull-back and refined intersections. VII. The universality of algebraic cobordism. 7.1. Statement of results. 7.2. Pull-back in Borel-Moore homology theories. 7.3. Universality 7.4. Some applications -- Appendix A: Resolution of singularities -- References -- Index -- Glossary of Notation. 
520 |a Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. Surprisingly, this theory satisfies the analogues of Quillen's theorems: the cobordism of the base field is the Lazard ring and the cobordism of a smooth variety is generated over the Lazard ring by the elements of positive degrees. This implies in particular the generalized degree formula conjectured by Rost. The book also contains some examples of computations and applications. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a K-theory. 
650 0 |a Topology. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Topology. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a K-Theory. 
700 1 |a Morel, Fabien.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540368229 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/3-540-36824-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)