Mathematical Implications of Einstein-Weyl Causality

The present work is the first systematic attempt at answering the following fundamental question: what mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The authors propose an axiomatization of Einstein-Weyl causality (insp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Borchers, Hans-Jürgen (Συγγραφέας), Sen, Rathindra Nath (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Σειρά:Lecture Notes in Physics, 709
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03091nam a22005295i 4500
001 978-3-540-37681-1
003 DE-He213
005 20151204141344.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540376811  |9 978-3-540-37681-1 
024 7 |a 10.1007/3-540-37681-X  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a Borchers, Hans-Jürgen.  |e author. 
245 1 0 |a Mathematical Implications of Einstein-Weyl Causality  |h [electronic resource] /  |c by Hans-Jürgen Borchers, Rathindra Nath Sen. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XII, 190 p. 37 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 709 
505 0 |a Geometrical Structures on Space-Time -- Light Rays and Light Cones -- Local Structure and Topology -- Homogeneity Properties -- Ordered Spaces and Complete Uniformizability -- Spaces with Complete Light Rays -- Consequences of Order Completeness -- The Cushion Problem -- Related Works -- Concluding Remarks -- Erratum to: Geometrical Structures on Space-Time -- Erratum to: Light Rays and Light Cones -- Erratum to: Local Structure and Topology -- Erratum to: Ordered Spaces and Complete Uniformizability -- Erratum to: Spaces with Complete Light Rays -- Erratum to: Consequences of Order Completeness -- Erratum. 
520 |a The present work is the first systematic attempt at answering the following fundamental question: what mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The authors propose an axiomatization of Einstein-Weyl causality (inspired by physics), and investigate the topological and uniform structures that it implies. Their final result is that a causal space is densely embedded in one that is locally a differentiable manifold. The mathematical level required of the reader is that of the graduate student in mathematical physics. 
650 0 |a Physics. 
650 0 |a Differential geometry. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Gravitation. 
650 1 4 |a Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Classical and Quantum Gravitation, Relativity Theory. 
650 2 4 |a Differential Geometry. 
700 1 |a Sen, Rathindra Nath.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540376804 
830 0 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 709 
856 4 0 |u http://dx.doi.org/10.1007/3-540-37681-X  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (Springer-11651)