OMDoc – An Open Markup Format for Mathematical Documents [version 1.2] Foreword by Allan Bundy /

Computers arechanging the way wethink. Of course,nearly all desk-workers have access to computers and use them to email their colleagues, search the Web for information and prepare documents. But I’m not referring to that. I mean that people have begun to think about what they do in compu- tional te...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kohlhase, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Lecture Notes in Computer Science, 4180
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04679nam a22005895i 4500
001 978-3-540-37898-3
003 DE-He213
005 20151204172127.0
007 cr nn 008mamaa
008 101025s2006 gw | s |||| 0|eng d
020 |a 9783540378983  |9 978-3-540-37898-3 
024 7 |a 10.1007/11826095  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Kohlhase, Michael.  |e author. 
245 1 0 |a OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]  |h [electronic resource] :  |b Foreword by Allan Bundy /  |c by Michael Kohlhase. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XIX, 428 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 4180 
505 0 |a Setting the Stage for Open Mathematical Documents -- Setting the Stage for Open Mathematical Documents -- Document Markup for the Web -- Markup for Mathematical Knowledge -- OMDoc: Open Mathematical Documents -- An OMDoc Primer -- An OMDoc Primer -- Mathematical Textbooks and Articles -- OpenMath Content Dictionaries -- Structured and Parametrized Theories -- A Development Graph for Elementary Algebra -- Courseware and the Narrative/Content Distinction -- Communication with and Between Mathematical Software Systems -- The OMDoc Document Format -- The OMDoc Document Format -- OMDoc as a Modular Format -- Document Infrastructure (Module DOC) -- Metadata (Modules DC and CC) -- Mathematical Objects (Module MOBJ) -- Mathematical Text (Modules MTXT and RT) -- Mathematical Statements (Module ST) -- Abstract Data Types (Module ADT) -- Representing Proofs (Module PF) -- Complex Theories (Modules CTH and DG) -- Notation and Presentation (Module PRES) -- Auxiliary Elements (Module EXT) -- Exercises (Module QUIZ) -- Document Models for OMDoc -- OMDoc Applications, Tools, and Projects -- OMDoc Applications, Tools, and Projects -- OMDoc Resources -- Validating OMDoc Documents -- Transforming OMDoc by XSLT Style Sheets -- OMDoc Applications and Projects -- Changes to the Specification -- Quick-Reference Table to the OMDoc Elements -- Quick-Reference Table to the OMDoc Attributes -- The RelaxNG Schema for OMDoc -- The RelaxNG Schemata for Mathematical Objects. 
520 |a Computers arechanging the way wethink. Of course,nearly all desk-workers have access to computers and use them to email their colleagues, search the Web for information and prepare documents. But I’m not referring to that. I mean that people have begun to think about what they do in compu- tional terms and to exploit the power of computers to do things that would previously have been unimaginable. This observation is especially true of mathematicians. Arithmetic c- putation is one of the roots of mathematics. Since Euclid’s algorithm for ?nding greatest common divisors, many seminal mathematical contributions have consisted of new procedures. But powerful computer graphics have now enabled mathematicians to envisage the behaviour of these procedures and, thereby, gain new insights, make new conjectures and explore new avenues of research. Think of the explosive interest in fractals, for instance. This has been driven primarily by our new-found ability rapidly to visualise fractal shapes, such as the Mandelbrot set. Taking advantage of these new oppor- nities has required the learning of new skills, such as using computer algebra and graphics packages. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Mathematical logic. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Information storage and retrieval. 
650 0 |a Artificial intelligence. 
650 0 |a Computer software. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Mathematical Software. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Symbolic and Algebraic Manipulation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540378976 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 4180 
856 4 0 |u http://dx.doi.org/10.1007/11826095  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)