Stochastic Geometry Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004 /

Stochastic Geometry is the mathematical discipline which studies mathematical models for random geometric structures, as they appear frequently in almost all natural sciences or technical fields. Although its roots can be traced back to the 18th century (the Buffon needle problem), the modern theory...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Baddeley, Adrian (Συγγραφέας), Bárány, Imre (Συγγραφέας), Schneider, Rolf (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Weil, Wolfgang (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Lecture Notes in Mathematics, 1892
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03291nam a22005655i 4500
001 978-3-540-38175-4
003 DE-He213
005 20151123131358.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540381754  |9 978-3-540-38175-4 
024 7 |a 10.1007/3-540-38174-0  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Baddeley, Adrian.  |e author. 
245 1 0 |a Stochastic Geometry  |h [electronic resource] :  |b Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–18, 2004 /  |c by Adrian Baddeley, Imre Bárány, Rolf Schneider ; edited by Wolfgang Weil. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XII, 292 p. 36 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1892 
505 0 |a Spatial Point Processes and their Applications -- Random Polytopes, Convex Bodies, and Approximation -- Integral Geometric Tools for Stochastic Geometry -- Random Sets (in Particular Boolean Models) -- Random Mosaics -- On the Evolution Equations of Mean Geometric Densities for a Class of Space and Time Inhomogeneous Stochastic Birth-and-growth Processes. 
520 |a Stochastic Geometry is the mathematical discipline which studies mathematical models for random geometric structures, as they appear frequently in almost all natural sciences or technical fields. Although its roots can be traced back to the 18th century (the Buffon needle problem), the modern theory of random sets was founded by D. Kendall and G. Matheron in the early 1970's. Its rapid development was influenced by applications in Spatial Statistics and by its close connections to Integral Geometry. The volume "Stochastic Geometry" contains the lectures given at the CIME summer school in Martina Franca in September 1974. The four main lecturers covered the areas of Spatial Statistics, Random Points, Integral Geometry and Random Sets, they are complemented by two additional contributions on Random Mosaics and Crystallization Processes. The book presents an up-to-date description of important parts of Stochastic Geometry. 
650 0 |a Mathematics. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Differential geometry. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Differential Geometry. 
700 1 |a Bárány, Imre.  |e author. 
700 1 |a Schneider, Rolf.  |e author. 
700 1 |a Weil, Wolfgang.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540381747 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1892 
856 4 0 |u http://dx.doi.org/10.1007/3-540-38174-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)