A Course in Enumeration

Combinatorial enumeration is a readily accessible subject full of easily stated, but sometimes tantalizingly difficult problems. This book leads the reader in a leisurely way from the basic notions to a variety of topics, ranging from algebra to statistical physics. Its aim is to introduce the stude...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Aigner, Martin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Σειρά:Graduate Texts in Mathematics, 238
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02605nam a22005055i 4500
001 978-3-540-39035-0
003 DE-He213
005 20151204172625.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540390350  |9 978-3-540-39035-0 
024 7 |a 10.1007/978-3-540-39035-0  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Aigner, Martin.  |e author. 
245 1 2 |a A Course in Enumeration  |h [electronic resource] /  |c by Martin Aigner. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a X, 565 p. 55 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 238 
505 0 |a Basics -- Fundamental Coefficients -- Formal Series and Infinite Matrices -- Methods -- Generating Functions -- Hypergeometric Summation -- Sieve Methods -- Enumeration of Patterns -- Topics -- The Catalan Connection -- Symmetric Functions -- Counting Polynomials -- Models from Statistical Physics. 
520 |a Combinatorial enumeration is a readily accessible subject full of easily stated, but sometimes tantalizingly difficult problems. This book leads the reader in a leisurely way from the basic notions to a variety of topics, ranging from algebra to statistical physics. Its aim is to introduce the student to a fascinating field, and to be a source of information for the professional mathematician who wants to learn more about the subject. The book is organized in three parts: Basics, Methods, and Topics. There are 666 exercises, and as a special feature every chapter ends with a highlight, discussing a particularly beautiful or famous result. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Algebra. 
650 0 |a Combinatorics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Combinatorics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Discrete Mathematics in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540390329 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 238 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-39035-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)