Mining Multimedia and Complex Data KDD Workshop MDM/KDD 2002, PAKDD Workshop KDMCD 2002, Revised Papers /

1 WorkshopTheme Digital multimedia di?ers from previous forms of combined media in that the bits that represent text, images, animations, and audio, video and other signals can be treated as data by computer programs. One facet of this diverse data in termsofunderlyingmodelsandformatsisthatitissynch...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Zaiane, Osmar R. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Simoff, Simeon (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Djeraba, Chabane (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Lecture Notes in Artificial Intelligence ; 2797
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05511nam a2200637 4500
001 978-3-540-39666-6
003 DE-He213
005 20191022033124.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783540396666  |9 978-3-540-39666-6 
024 7 |a 10.1007/b12031  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D35 
050 4 |a Q350-390 
072 7 |a UMB  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a UMB  |2 thema 
072 7 |a GPF  |2 thema 
082 0 4 |a 005.73  |2 23 
245 1 0 |a Mining Multimedia and Complex Data  |h [electronic resource] :  |b KDD Workshop MDM/KDD 2002, PAKDD Workshop KDMCD 2002, Revised Papers /  |c edited by Osmar R. Zaiane, Simeon Simoff, Chabane Djeraba. 
250 |a 1st ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a XII, 284 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 2797 
505 0 |a Subjective Interpretation of Complex Data: Requirements for Supporting Kansei Mining Process -- Multimedia Data Mining Framework for Raw Video Sequences -- Object Detection for Hierarchical Image Classification -- Mining High-Level User Concepts with Multiple Instance Learning and Relevance Feedback for Content-Based Image Retrieval -- Associative Classifiers for Medical Images -- An Innovative Concept for Image Information Mining -- Multimedia Data Mining Using P-Trees -- Scale Space Exploration for Mining Image Information Content -- Videoviews: A Content Based Video Description Schema and Database Navigation Tool -- The Community of Multimedia Agents -- Multimedia Mining of Collaborative Virtual Workspaces: An Integrative Framework for Extracting and Integrating Collaborative Process Knowledge -- STIFF: A Forecasting Framework for SpatioTemporal Data -- Mining Propositional Knowledge Bases to Discover Multi-level Rules -- Meta-classification: Combining Multimodal Classifiers -- Partition Cardinality Estimation in Image Repositories -- A Framework for Customizable Sports Video Management and Retrieval -- Style Recognition Using Keyword Analysis. 
520 |a 1 WorkshopTheme Digital multimedia di?ers from previous forms of combined media in that the bits that represent text, images, animations, and audio, video and other signals can be treated as data by computer programs. One facet of this diverse data in termsofunderlyingmodelsandformatsisthatitissynchronizedandintegrated, hence it can be treated as integral data records. Such records can be found in a number of areas of human endeavour. Modern medicine generates huge amounts of such digital data. Another - ample is architectural design and the related architecture, engineering and c- struction (AEC) industry. Virtual communities (in the broad sense of this word, which includes any communities mediated by digital technologies) are another example where generated data constitutes an integral data record. Such data may include data about member pro?les, the content generated by the virtual community, and communication data in di?erent formats, including e-mail, chat records, SMS messages, videoconferencing records. Not all multimedia data is so diverse. An example of less diverse data, but data that is larger in terms of the collected amount, is that generated by video surveillance systems, where each integral data record roughly consists of a set of time-stamped images - the video frames. In any case, the collection of such in- gral data records constitutes a multimedia data set. The challenge of extracting meaningful patterns from such data sets has led to the research and devel- ment in the area of multimedia data mining. 
650 0 |a Data structures (Computer science). 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Computer communication systems. 
650 0 |a Database management. 
650 0 |a Information storage and retrieval. 
650 1 4 |a Data Structures and Information Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/I15009 
650 2 4 |a Popular Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/Q23000 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Computer Communication Networks.  |0 http://scigraph.springernature.com/things/product-market-codes/I13022 
650 2 4 |a Database Management.  |0 http://scigraph.springernature.com/things/product-market-codes/I18024 
650 2 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
700 1 |a Zaiane, Osmar R.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Simoff, Simeon.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Djeraba, Chabane.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662201152 
776 0 8 |i Printed edition:  |z 9783540203056 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 2797 
856 4 0 |u https://doi.org/10.1007/b12031  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)