Gröbner Bases and the Computation of Group Cohomology

This monograph develops the Gröbner basis methods needed to perform efficient state of the art calculations in the cohomology of finite groups. Results obtained include the first counterexample to the conjecture that the ideal of essential classes squares to zero. The context is J. F. Carlson'...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Green, David J. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Lecture Notes in Mathematics, 1828
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02670nam a2200505 4500
001 978-3-540-39680-2
003 DE-He213
005 20191024102655.0
007 cr nn 008mamaa
008 150519s2003 gw | s |||| 0|eng d
020 |a 9783540396802  |9 978-3-540-39680-2 
024 7 |a 10.1007/b93836  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Green, David J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Gröbner Bases and the Computation of Group Cohomology  |h [electronic resource] /  |c by David J. Green. 
250 |a 1st ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a XII, 144 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1828 
505 0 |a Introduction -- Part I Constructing minimal resolutions: Bases for finite-dimensional algebras and modules; The Buchberger Algorithm for modules; Constructing minimal resolutions -- Part II Cohomology ring structure: Gröbner bases for graded commutative algebras; The visible ring structure; The completeness of the presentation -- Part III Experimental results: Experimental results -- A. Sample cohomology calculations -- Epilogue -- References -- Index. 
520 |a This monograph develops the Gröbner basis methods needed to perform efficient state of the art calculations in the cohomology of finite groups. Results obtained include the first counterexample to the conjecture that the ideal of essential classes squares to zero. The context is J. F. Carlson's minimal resolutions approach to cohomology computations. 
650 0 |a Group theory. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 1 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
650 2 4 |a Associative Rings and Algebras.  |0 http://scigraph.springernature.com/things/product-market-codes/M11027 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540203391 
776 0 8 |i Printed edition:  |z 9783662191170 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1828 
856 4 0 |u https://doi.org/10.1007/b93836  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)