Advances in Bayesian Networks
In recent years probabilistic graphical models, especially Bayesian networks and decision graphs, have experienced significant theoretical development within areas such as Artificial Intelligence and Statistics. This carefully edited monograph is a compendium of the most recent advances in the area...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2004.
|
Έκδοση: | 1st ed. 2004. |
Σειρά: | Studies in Fuzziness and Soft Computing,
146 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Περίληψη: | In recent years probabilistic graphical models, especially Bayesian networks and decision graphs, have experienced significant theoretical development within areas such as Artificial Intelligence and Statistics. This carefully edited monograph is a compendium of the most recent advances in the area of probabilistic graphical models such as decision graphs, learning from data and inference. It presents a survey of the state of the art of specific topics of recent interest of Bayesian Networks, including approximate propagation, abductive inferences, decision graphs, and applications of influence. In addition, "Advances in Bayesian Networks" presents a careful selection of applications of probabilistic graphical models to various fields such as speech recognition, meteorology or information retrieval. |
---|---|
Φυσική περιγραφή: | XI, 328 p. online resource. |
ISBN: | 9783540398790 |
ISSN: | 1434-9922 ; |
DOI: | 10.1007/978-3-540-39879-0 |