Advances in Bayesian Networks

In recent years probabilistic graphical models, especially Bayesian networks and decision graphs, have experienced significant theoretical development within areas such as Artificial Intelligence and Statistics. This carefully edited monograph is a compendium of the most recent advances in the area...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Gámez, José A. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Moral, Serafin (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Salmerón Cerdan, Antonio (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Studies in Fuzziness and Soft Computing, 146
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04795nam a2200637 4500
001 978-3-540-39879-0
003 DE-He213
005 20191022102322.0
007 cr nn 008mamaa
008 130609s2004 gw | s |||| 0|eng d
020 |a 9783540398790  |9 978-3-540-39879-0 
024 7 |a 10.1007/978-3-540-39879-0  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
245 1 0 |a Advances in Bayesian Networks  |h [electronic resource] /  |c edited by José A. Gámez, Serafin Moral, Antonio Salmerón Cerdan. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a XI, 328 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 146 
505 0 |a Hypercausality, Randomisation Local and Global Independence -- Interface Verification for Multiagent Probabilistic Inference -- Optimal Time-Space Tradeoff In Probabilistic Inference -- Hierarchical Junction Trees -- Algorithms for Approximate Probability Propagation in Bayesian Networks -- Abductive Inference in Bayesian Networks: A Review -- Causal Models, Value of Intervention, and Search for Opportunities -- Advances in Decision Graphs -- Real-World Applications of Influence Diagrams -- Learning Bayesian Networks by Floating Search Methods -- A Graphical Meta-Model for Reasoning about Bayesian Network Structure -- Restricted Bayesian Network Structure Learning -- Scaled Conjugate Gradients for Maximum Likelihood: An Empirical Comparison with the EM Algorithm -- Learning Essential Graph Markov Models from Data -- Fast Propagation Algorithms for Singly Connected Networks and their Applications to Information Retrieval -- Continuous Speech Recognition Using Dynamic Bayesian Networks: A Fast Decoding Algorithm -- Applications of Bayesian Networks in Meteorology. 
520 |a  In recent years probabilistic graphical models, especially Bayesian networks and decision graphs, have experienced significant theoretical development within areas such as Artificial Intelligence and Statistics. This carefully edited monograph is a compendium of the most recent advances in the area of probabilistic graphical models such as decision graphs, learning from data and inference. It presents a survey of the state of the art of specific topics of recent interest of Bayesian Networks, including approximate propagation, abductive inferences, decision graphs, and applications of influence. In addition, "Advances in Bayesian Networks" presents a careful selection of applications of probabilistic graphical models to various fields such as speech recognition, meteorology or information retrieval. 
650 0 |a Probabilities. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Statistics . 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Mathematical and Computational Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T11006 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17020 
700 1 |a Gámez, José A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Moral, Serafin.  |e editor.  |0 (orcid)0000-0002-5555-0857  |1 https://orcid.org/0000-0002-5555-0857  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Salmerón Cerdan, Antonio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642058851 
776 0 8 |i Printed edition:  |z 9783540208761 
776 0 8 |i Printed edition:  |z 9783642535512 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 146 
856 4 0 |u https://doi.org/10.1007/978-3-540-39879-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)