Evolutionary Computations New Algorithms and their Applications to Evolutionary Robots /

Evolutionary Computation, a broad field that includes Genetic Algorithms, Evolution Strategies, and Evolutionary Programming, has proven to offer well-suited techniques for industrial and management tasks - therefore receiving considerable attention fom scientists and engineers during the last decad...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Watanabe, Keigo (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Hashem, M.M.A (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Studies in Fuzziness and Soft Computing, 147
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06407nam a2200601 4500
001 978-3-540-39883-7
003 DE-He213
005 20191022111731.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540398837  |9 978-3-540-39883-7 
024 7 |a 10.1007/978-3-540-39883-7  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a T59.5 
072 7 |a TJFM1  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TJFM1  |2 thema 
082 0 4 |a 629.892  |2 23 
100 1 |a Watanabe, Keigo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Evolutionary Computations  |h [electronic resource] :  |b New Algorithms and their Applications to Evolutionary Robots /  |c by Keigo Watanabe, M.M.A. Hashem. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a XIX, 172 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 147 
505 0 |a 1. Evolutionary Algorithms: Revisited -- 1.1 Introduction -- 1.2 Stochastic Optimization Algorithms -- 1.3 Properties of Stochastic Optimization Algorithms -- 1.4 Variants of Evolutionary Algorithms -- 1.5 Basic Mechanisms of Evolutionary Algorithms -- 1.6 Similarities and Differences of Evolutionary Algorithms -- 1.7 Merits and Demerits of Evolutionary Algorithms -- 1.8 Summary -- 2. A Novel Evolution Strategy Algorithm -- 2.1 Introduction -- 2.2 Development of New Variation Operators -- 2.3 Proposed Novel Evolution Strategy -- 2.4 Proposed NES: How Does It Work? -- 2.5 Performance of the Proposed Evolution Strategy -- 2.6 Empirical Investigations for Exogenous Parameters -- 2.7 Summary -- 3. Evolutionary Optimization of Constrained Problems -- 3.1 Introduction -- 3.2 Constrained Optimization Problem -- 3.3 Constraint-Handling in Evolutionary Algorithms -- 3.4 Characteristics of the NES Algorithm -- 3.5 Construction of the Constrained Fitness Function -- 3.6 Test Problems -- 3.7 Implementation, Results and Discussions -- 3.8 Summary -- 4. An Incest Prevented Evolution Strategy Algorithm -- 4.1 Introduction -- 4.2 Incest Prevention: A Natural Phenomena -- 4.3 Proposed Incest Prevented Evolution Strategy -- 4.4 Performance of the Proposed Incest Prevented Evolution Strategy -- 4.5 Implementation and Experimental Results -- 4.6 Summary -- 5. Evolutionary Solution of Optimal Control Problems -- 5.1 Introduction -- 5.2 Conventional Variation Operators -- 5.3 Optimal Control Problems -- 5.4 Simulation Examples -- 5.5 Results and Discussions -- 5.6 Summary -- 6. Evolutionary Design of Robot Controllers -- 6.1 Introduction -- 6.2 A Mobile Robot with Two Independent Driving Wheels -- 6.3 Optimal Servocontroller Design for the Robot -- 6.4 Construction of the Fitness Function for the Controllers -- 6.5 Considerations for Design and Simulations -- 6.6 Results and Discussions -- 6.7 Summary -- 7. Evolutionary Behavior-Based Control of Mobile Robots -- 7.1 Introduction -- 7.2 An Evolution Strategy Using Statistical Information of Subgroups -- 7.3 Omnidirectional Mobile Robot -- 7.4 Fuzzy Behavior-Based Control System -- 7.5 Acquisition of Control System -- 7.6 Summary -- 8. Evolutionary Trajectory Planning of Autonomous Robots -- 8.1 Introduction -- 8.2 Fundamentals of Evolutionary Trajectory Planning -- 8.3 Formulation of the Problem for Trajectory Planning -- 8.4 Polygonal Obstacle Sensing and Its Representation -- 8.5 Special Representations of Evolutionary Components -- 8.6 Construction of the Fitness Function -- 8.7 Bounds for Evolutionary Parameters -- 8.8 Proposed Evolutionary Trajectory Planning Algorithm -- 8.9 Considerations and Simulations -- 8.10 Results and Discussions -- 8.11 Summary -- A. Definitions from Probability Theory and Statistics -- A.1 Random Variables, Distributions and Density Functions -- A.2 Characteristics Values of Probability Distributions -- A.2.1 One Dimensional Distributions: -- A.2.2 Multidimensional Distributions -- A.3 Special Distributions -- A.3.1 The Normal or Gaussian Distribution -- A.3.4 The Cauchy Distribution -- B. C-Language Source Code of the NES Algorithm -- C. Convergence Behavior of Evolution Strategies -- C.1 Convergence Reliability -- C.2 Convergence Velocity -- References. 
520 |a Evolutionary Computation, a broad field that includes Genetic Algorithms, Evolution Strategies, and Evolutionary Programming, has proven to offer well-suited techniques for industrial and management tasks - therefore receiving considerable attention fom scientists and engineers during the last decade. This monograph develops and analyzes evolutionary algorithms that can be successfully applied to real-world problems such as robotic control. Although of particular interest to robotic control engineers, "Evolutionary Computations" also may interest the large audience of researchers, engineers, designers and graduate students confronted with complicated optimization tasks. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Control engineering. 
650 0 |a Mechatronics. 
650 1 4 |a Robotics and Automation.  |0 http://scigraph.springernature.com/things/product-market-codes/T19020 
650 2 4 |a Mathematical and Computational Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T11006 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Control, Robotics, Mechatronics.  |0 http://scigraph.springernature.com/things/product-market-codes/T19000 
700 1 |a Hashem, M.M.A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642058875 
776 0 8 |i Printed edition:  |z 9783540209010 
776 0 8 |i Printed edition:  |z 9783642535529 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 147 
856 4 0 |u https://doi.org/10.1007/978-3-540-39883-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)