Big Queues

Big Queues aims to give a simple and elegant account of how large deviations theory can be applied to queueing problems. Large deviations theory is a collection of powerful results and general techniques for studying rare events, and has been applied to queueing problems in a variety of ways. The st...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ganesh, Ayalvadi J. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), O'Connell, Neil (http://id.loc.gov/vocabulary/relators/aut), Wischik, Damon J. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Lecture Notes in Mathematics, 1838
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03023nam a2200553 4500
001 978-3-540-39889-9
003 DE-He213
005 20191024102644.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540398899  |9 978-3-540-39889-9 
024 7 |a 10.1007/978-3-540-39889-9  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Ganesh, Ayalvadi J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Big Queues  |h [electronic resource] /  |c by Ayalvadi J. Ganesh, Neil O'Connell, Damon J. Wischik. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a XI, 260 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1838 
505 0 |a The single server queue -- Large deviations in Euclidean spaces -- More on the single server queue -- Introduction to abstract large deviations -- Continuous queueing maps -- Large-buffer scalings -- May-flows scalings -- Long range dependence -- Moderate deviations scalings -- Interpretations -- Bibliography -- Index of notation -- Index. 
520 |a Big Queues aims to give a simple and elegant account of how large deviations theory can be applied to queueing problems. Large deviations theory is a collection of powerful results and general techniques for studying rare events, and has been applied to queueing problems in a variety of ways. The strengths of large deviations theory are these: it is powerful enough that one can answer many questions which are hard to answer otherwise, and it is general enough that one can draw broad conclusions without relying on special case calculations. 
650 0 |a Probabilities. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Applications of Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M13003 
700 1 |a O'Connell, Neil.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wischik, Damon J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540209126 
776 0 8 |i Printed edition:  |z 9783662200810 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1838 
856 4 0 |u https://doi.org/10.1007/978-3-540-39889-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)