Combinations of Complex Dynamical Systems

This work is a research-level monograph whose goal is to develop a general combination, decomposition, and structure theory for branched coverings of the two-sphere to itself, regarded as the combinatorial and topological objects which arise in the classification of certain holomorphic dynamical sys...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pilgrim, Kevin M. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Lecture Notes in Mathematics, 1827
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02917nam a2200541 4500
001 978-3-540-39936-0
003 DE-He213
005 20191024121135.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783540399360  |9 978-3-540-39936-0 
024 7 |a 10.1007/b14147  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.9  |2 23 
100 1 |a Pilgrim, Kevin M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Combinations of Complex Dynamical Systems  |h [electronic resource] /  |c by Kevin M. Pilgrim. 
250 |a 1st ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a XII, 120 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1827 
505 0 |a Introduction -- Preliminaries -- Combinations -- Uniqueness of combinations -- Decompositions -- Uniqueness of decompositions -- Counting classes of annulus maps -- Applications to mapping class groups. Examples -- Canonical decomposition theorem. 
520 |a This work is a research-level monograph whose goal is to develop a general combination, decomposition, and structure theory for branched coverings of the two-sphere to itself, regarded as the combinatorial and topological objects which arise in the classification of certain holomorphic dynamical systems on the Riemann sphere. It is intended for researchers interested in the classification of those complex one-dimensional dynamical systems which are in some loose sense tame. The program is motivated by the dictionary between the theories of iterated rational maps and Kleinian groups. 
650 0 |a Functions of complex variables. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Functions of a Complex Variable.  |0 http://scigraph.springernature.com/things/product-market-codes/M12074 
650 2 4 |a Dynamical Systems and Ergodic Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M1204X 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 http://scigraph.springernature.com/things/product-market-codes/M12082 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540201731 
776 0 8 |i Printed edition:  |z 9783662178935 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1827 
856 4 0 |u https://doi.org/10.1007/b14147  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)