Real Enriques Surfaces

This is the first attempt of a systematic study of real Enriques surfaces culminating in their classification up to deformation. Simple explicit topological invariants are elaborated for identifying the deformation classes of real Enriques surfaces. Some of theses are new and can be applied to other...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Degtyarev, Alexander (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Itenberg, Ilia (http://id.loc.gov/vocabulary/relators/aut), Kharlamov, Viatcheslav (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Mathematics, 1746
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03531nam a2200553 4500
001 978-3-540-39948-3
003 DE-He213
005 20191024202307.0
007 cr nn 008mamaa
008 121227s2000 gw | s |||| 0|eng d
020 |a 9783540399483  |9 978-3-540-39948-3 
024 7 |a 10.1007/BFb0103960  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Degtyarev, Alexander.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Real Enriques Surfaces  |h [electronic resource] /  |c by Alexander Degtyarev, Ilia Itenberg, Viatcheslav Kharlamov. 
250 |a 1st ed. 2000. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2000. 
300 |a XVIII, 266 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1746 
505 0 |a Topology of involutions -- Integral lattices and quadratic forms -- Algebraic surfaces -- Real surfaces: the topological aspects -- Summary: Deformation Classes -- Topology of real enriques surfaces -- Moduli of real enriques surfaces -- Deformation types: the hyperbolic and parabolic cases -- Deformation types: the elliptic and parabolic cases. 
520 |a This is the first attempt of a systematic study of real Enriques surfaces culminating in their classification up to deformation. Simple explicit topological invariants are elaborated for identifying the deformation classes of real Enriques surfaces. Some of theses are new and can be applied to other classes of surfaces or higher-dimensional varieties. Intended for researchers and graduate students in real algebraic geometry it may also interest others who want to become familiar with the field and its techniques. The study relies on topology of involutions, arithmetics of integral quadratic forms, algebraic geometry of surfaces, and the hyperkähler structure of K3-surfaces. A comprehensive summary of the necessary results and techniques from each of these fields is included. Some results are developed further, e.g., a detailed study of lattices with a pair of commuting involutions and a certain class of rational complex surfaces. 
650 0 |a Algebraic geometry. 
650 0 |a Algebraic topology. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
650 2 4 |a Algebraic Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28019 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 http://scigraph.springernature.com/things/product-market-codes/M12082 
700 1 |a Itenberg, Ilia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kharlamov, Viatcheslav.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662210000 
776 0 8 |i Printed edition:  |z 9783540410881 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1746 
856 4 0 |u https://doi.org/10.1007/BFb0103960  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)