Gorenstein Dimensions

This book is intended as a reference for mathematicians working with homological dimensions in commutative algebra and as an introduction to Gorenstein dimensions for graduate students with an interest in the same. Any admirer of classics like the Auslander-Buchsbaum-Serre characterization of regula...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Christensen, Lars W. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Mathematics, 1747
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03061nam a2200517 4500
001 978-3-540-40008-0
003 DE-He213
005 20190619063709.0
007 cr nn 008mamaa
008 121227s2000 gw | s |||| 0|eng d
020 |a 9783540400080  |9 978-3-540-40008-0 
024 7 |a 10.1007/BFb0103980  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Christensen, Lars W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Gorenstein Dimensions  |h [electronic resource] /  |c by Lars W. Christensen. 
250 |a 1st ed. 2000. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2000. 
300 |a X, 210 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1747 
505 0 |a Introduction -- Synopsis -- Conventions and prerequisites -- The classical Gorenstein dimension -- G-dimension and reflexive complexes -- Auslander categories -- G-projectivity. - G-injectivity -- Appendix: Hyperhomology. Basic definitions and notation. Standard functors and morphisms. Resolutions. Almost derived functors. Homological dimensions. Depth and width. Numerical and formal invariants. Dualizing complexes. 
520 |a This book is intended as a reference for mathematicians working with homological dimensions in commutative algebra and as an introduction to Gorenstein dimensions for graduate students with an interest in the same. Any admirer of classics like the Auslander-Buchsbaum-Serre characterization of regular rings, and the Bass and Auslander-Buchsbaum formulas for injective and projective dimension of f.g. modules will be intrigued by this book's content. Readers should be well-versed in commutative algebra and standard applications of homological methods. The framework is that of complexes, but all major results are restated for modules in traditional notation, and an appendix makes the proofs accessible for even the casual user of hyperhomological methods. 
650 0 |a Algebra. 
650 0 |a K-theory. 
650 0 |a Mathematics. 
650 1 4 |a Algebra.  |0 http://scigraph.springernature.com/things/product-market-codes/M11000 
650 2 4 |a K-Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M11086 
650 2 4 |a Mathematics, general.  |0 http://scigraph.springernature.com/things/product-market-codes/M00009 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662189207 
776 0 8 |i Printed edition:  |z 9783540411321 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1747 
856 4 0 |u https://doi.org/10.1007/BFb0103980  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)