The Logic System of Concept Graphs with Negation And Its Relationship to Predicate Logic /

The aim of contextual logic is to provide a formal theory of elementary logic, which is based on the doctrines of concepts, judgements, and conclusions. Concepts are mathematized using Formal Concept Analysis (FCA), while an approach to the formalization of judgements and conclusions is conceptual g...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Dau, Frithjof (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
Έκδοση:1st ed. 2003.
Σειρά:Lecture Notes in Computer Science, 2892
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04101nam a2200565 4500
001 978-3-540-40062-2
003 DE-He213
005 20191024041642.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 |a 9783540400622  |9 978-3-540-40062-2 
024 7 |a 10.1007/b94030  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBC  |2 thema 
072 7 |a PBCD  |2 thema 
082 0 4 |a 511.3  |2 23 
100 1 |a Dau, Frithjof.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Logic System of Concept Graphs with Negation  |h [electronic resource] :  |b And Its Relationship to Predicate Logic /  |c by Frithjof Dau. 
250 |a 1st ed. 2003. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2003. 
300 |a XII, 216 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2892 
505 0 |a Start -- 1 Introduction -- 2 Basic Definitions -- Alpha -- 3 Overview for Alpha -- 4 Semantics for Nonexistential Concept Graphs -- 5 Calculus for Nonexistential Concept Graphs -- 6 Soundness and Completeness -- Beta -- 7 Overview for Beta -- 8 First Order Logic -- 9 Semantics for Existential Concept Graphs -- 10 Calculus for Existential Concept Graphs -- 11 Syntactical Equivalence to FOL -- 12 Summary of Beta -- 13 Concept Graphs without Cuts -- 14 Design Decisions. 
520 |a The aim of contextual logic is to provide a formal theory of elementary logic, which is based on the doctrines of concepts, judgements, and conclusions. Concepts are mathematized using Formal Concept Analysis (FCA), while an approach to the formalization of judgements and conclusions is conceptual graphs, based on Peirce's existential graphs. Combining FCA and a mathematization of conceptual graphs yields so-called concept graphs, which offer a formal and diagrammatic theory of elementary logic. Expressing negation in contextual logic is a difficult task. Based on the author's dissertation, this book shows how negation on the level of judgements can be implemented. To do so, cuts (syntactical devices used to express negation) are added to concept graphs. As we can express relations between objects, conjunction and negation in judgements, and existential quantification, the author demonstrates that concept graphs with cuts have the expressive power of first-order predicate logic. While doing so, the author distinguishes between syntax and semantics, and provides a sound and complete calculus for concept graphs with cuts. The author's treatment is mathematically thorough and consistent, and the book gives the necessary background on existential and conceptual graphs. 
650 0 |a Mathematical logic. 
650 0 |a Artificial intelligence. 
650 0 |a Computer science. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Mathematical Logic and Foundations.  |0 http://scigraph.springernature.com/things/product-market-codes/M24005 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Computer Science, general.  |0 http://scigraph.springernature.com/things/product-market-codes/I00001 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 http://scigraph.springernature.com/things/product-market-codes/I16048 
650 2 4 |a Discrete Mathematics in Computer Science.  |0 http://scigraph.springernature.com/things/product-market-codes/I17028 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662181270 
776 0 8 |i Printed edition:  |z 9783540206071 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2892 
856 4 0 |u https://doi.org/10.1007/b94030  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)