K3 Projective Models in Scrolls
The exposition studies projective models of K3 surfaces whose hyperplane sections are non-Clifford general curves. These models are contained in rational normal scrolls. The exposition supplements standard descriptions of models of general K3 surfaces in projective spaces of low dimension, and leads...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2004.
|
Έκδοση: | 1st ed. 2004. |
Σειρά: | Lecture Notes in Mathematics,
1842 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Περίληψη: | The exposition studies projective models of K3 surfaces whose hyperplane sections are non-Clifford general curves. These models are contained in rational normal scrolls. The exposition supplements standard descriptions of models of general K3 surfaces in projective spaces of low dimension, and leads to a classification of K3 surfaces in projective spaces of dimension at most 10. The authors bring further the ideas in Saint-Donat's classical article from 1974, lifting results from canonical curves to K3 surfaces and incorporating much of the Brill-Noether theory of curves and theory of syzygies developed in the mean time. |
---|---|
Φυσική περιγραφή: | VIII, 172 p. online resource. |
ISBN: | 9783540408987 |
ISSN: | 0075-8434 ; |
DOI: | 10.1007/b97183 |