K3 Projective Models in Scrolls
The exposition studies projective models of K3 surfaces whose hyperplane sections are non-Clifford general curves. These models are contained in rational normal scrolls. The exposition supplements standard descriptions of models of general K3 surfaces in projective spaces of low dimension, and leads...
| Κύριοι συγγραφείς: | , |
|---|---|
| Συγγραφή απο Οργανισμό/Αρχή: | |
| Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
| Γλώσσα: | English |
| Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2004.
|
| Έκδοση: | 1st ed. 2004. |
| Σειρά: | Lecture Notes in Mathematics,
1842 |
| Θέματα: | |
| Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Surfaces in scrolls
- The Clifford index of smooth curves in |L| and the definition of the scrolls T(c, D, {D_{\lamda}})
- Two existence theorems
- The singular locus of the surface S´ and the scroll T
- Postponed proofs
- Projective models in smooth scrolls
- Projective models in singular scrolls
- More on projective models in smooth scrolls of K3 surfaces of low Clifford-indices
- BN general and Clifford general K3 surfaces
- Projective models of K3 surfaces of low genus
- Some applications and open questions
- References
- Index.