Uniqueness Theorems for Variational Problems by the Method of Transformation Groups

A classical problem in the calculus of variations is the investigation of critical points of functionals {\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space V does {\cal L} have at most one critical point? A...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Reichel, Wolfgang (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Lecture Notes in Mathematics, 1841
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02933nam a2200517 4500
001 978-3-540-40915-1
003 DE-He213
005 20191026041423.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540409151  |9 978-3-540-40915-1 
024 7 |a 10.1007/b96984  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
072 7 |a PBKQ  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a PBKQ  |2 thema 
072 7 |a PBU  |2 thema 
082 0 4 |a 515.64  |2 23 
100 1 |a Reichel, Wolfgang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Uniqueness Theorems for Variational Problems by the Method of Transformation Groups  |h [electronic resource] /  |c by Wolfgang Reichel. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a XIV, 158 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1841 
505 0 |a Introduction -- Uniqueness of Critical Points (I) -- Uniqueness of Citical Pints (II) -- Variational Problems on Riemannian Manifolds -- Scalar Problems in Euclidean Space -- Vector Problems in Euclidean Space -- Fréchet-Differentiability -- Lipschitz-Properties of ge and omegae. 
520 |a A classical problem in the calculus of variations is the investigation of critical points of functionals {\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space V does {\cal L} have at most one critical point? A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity. 
650 0 |a Calculus of variations. 
650 0 |a Partial differential equations. 
650 1 4 |a Calculus of Variations and Optimal Control; Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26016 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540218395 
776 0 8 |i Printed edition:  |z 9783662175231 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1841 
856 4 0 |u https://doi.org/10.1007/b96984  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)