Lectures on Seiberg-Witten Invariants

Riemannian, symplectic and complex geometry are often studied by means ofsolutions to systems ofnonlinear differential equations, such as the equa­ tions of geodesics, minimal surfaces, pseudoholomorphic curves and Yang­ Mills connections. For studying such equations, a new unified technology has be...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Moore, John D. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:2nd ed. 2001.
Σειρά:Lecture Notes in Mathematics, 1629
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04161nam a2200589 4500
001 978-3-540-40952-6
003 DE-He213
005 20191027041235.0
007 cr nn 008mamaa
008 121227s2001 gw | s |||| 0|eng d
020 |a 9783540409526  |9 978-3-540-40952-6 
024 7 |a 10.1007/978-3-540-40952-6  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Moore, John D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lectures on Seiberg-Witten Invariants  |h [electronic resource] /  |c by John D. Moore. 
250 |a 2nd ed. 2001. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2001. 
300 |a VIII, 121 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1629 
520 |a Riemannian, symplectic and complex geometry are often studied by means ofsolutions to systems ofnonlinear differential equations, such as the equa­ tions of geodesics, minimal surfaces, pseudoholomorphic curves and Yang­ Mills connections. For studying such equations, a new unified technology has been developed, involving analysis on infinite-dimensional manifolds. A striking applications of the new technology is Donaldson's theory of "anti-self-dual" connections on SU(2)-bundles over four-manifolds, which applies the Yang-Mills equations from mathematical physics to shed light on the relationship between the classification of topological and smooth four-manifolds. This reverses the expected direction of application from topology to differential equations to mathematical physics. Even though the Yang-Mills equations are only mildly nonlinear, a prodigious amount of nonlinear analysis is necessary to fully understand the properties of the space of solutions. . At our present state of knowledge, understanding smooth structures on topological four-manifolds seems to require nonlinear as opposed to linear PDE's. It is therefore quite surprising that there is a set of PDE's which are even less nonlinear than the Yang-Mills equation, but can yield many of the most important results from Donaldson's theory. These are the Seiberg-Witte~ equations. These lecture notes stem from a graduate course given at the University of California in Santa Barbara during the spring quarter of 1995. The objective was to make the Seiberg-Witten approach to Donaldson theory accessible to second-year graduate students who had already taken basic courses in differential geometry and algebraic topology. 
650 0 |a Algebra. 
650 0 |a Algebraic topology. 
650 0 |a Calculus of variations. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a System theory. 
650 0 |a Algebraic geometry. 
650 1 4 |a Algebra.  |0 http://scigraph.springernature.com/things/product-market-codes/M11000 
650 2 4 |a Algebraic Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28019 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26016 
650 2 4 |a Global Analysis and Analysis on Manifolds.  |0 http://scigraph.springernature.com/things/product-market-codes/M12082 
650 2 4 |a Systems Theory, Control.  |0 http://scigraph.springernature.com/things/product-market-codes/M13070 
650 2 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662208557 
776 0 8 |i Printed edition:  |z 9783540412212 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1629 
856 4 0 |u https://doi.org/10.1007/978-3-540-40952-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)