The Principle of Least Action in Geometry and Dynamics

New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplecti...

Full description

Bibliographic Details
Main Author: Siburg, Karl Friedrich (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Edition:1st ed. 2004.
Series:Lecture Notes in Mathematics, 1844
Subjects:
Online Access:Full Text via HEAL-Link
Description
Summary:New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather's minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book.
Physical Description:XII, 132 p. online resource.
ISBN:9783540409854
ISSN:0075-8434 ;
DOI:10.1007/978-3-540-40985-4