Geometric Methods in the Algebraic Theory of Quadratic Forms Summer School, Lens, 2000 /

The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the renewal of the theory by Pfister in the 1960's. Recently, more refined geomet...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Izhboldin, Oleg T. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Kahn, Bruno (http://id.loc.gov/vocabulary/relators/aut), Karpenko, Nikita A. (http://id.loc.gov/vocabulary/relators/aut), Vishik, Alexander (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Tignol, Jean-Pierre (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Lecture Notes in Mathematics, 1835
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04114nam a2200541 4500
001 978-3-540-40990-8
003 DE-He213
005 20191026041359.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540409908  |9 978-3-540-40990-8 
024 7 |a 10.1007/b94827  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Izhboldin, Oleg T.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometric Methods in the Algebraic Theory of Quadratic Forms  |h [electronic resource] :  |b Summer School, Lens, 2000 /  |c by Oleg T. Izhboldin, Bruno Kahn, Nikita A. Karpenko, Alexander Vishik ; edited by Jean-Pierre Tignol. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a XIV, 198 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1835 
505 0 |a Cohomologie non ramifiée des quadriques (B. Kahn) -- Motives of Quadrics with Applications to the Theory of Quadratic Forms (A. Vishik) -- Motives and Chow Groups of Quadrics with Applications to the u-invariant (N.A. Karpenko after O.T. Izhboldin) -- Virtual Pfister Neigbors and First Witt Index (O.T. Izhboldin) -- Some New Results Concerning Isotropy of Low-dimensional Forms (O.T. Izhboldin) -- Izhboldin's Results on Stably Birational Equivalence of Quadrics (N.A. Karpenko) -- My recollections about Oleg Izhboldin (A.S. Merkurjev). 
520 |a The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the renewal of the theory by Pfister in the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes - an introduction to motives of quadrics by Alexander Vishik, with various applications, notably to the splitting patterns of quadratic forms under base field extensions; - papers by Oleg Izhboldin and Nikita Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields which carry anisotropic quadratic forms of dimension 9, but none of higher dimension; - a contribution in French by Bruno Kahn which lays out a general framework for the computation of the unramified cohomology groups of quadrics and other cellular varieties. Most of the material appears here for the first time in print. The intended audience consists of research mathematicians at the graduate or post-graduate level. 
650 0 |a Number theory. 
650 0 |a Algebraic geometry. 
650 1 4 |a Number Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M25001 
650 2 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
700 1 |a Kahn, Bruno.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Karpenko, Nikita A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vishik, Alexander.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Tignol, Jean-Pierre.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540207283 
776 0 8 |i Printed edition:  |z 9783662177747 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1835 
856 4 0 |u https://doi.org/10.1007/b94827  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)