Geometric Methods in the Algebraic Theory of Quadratic Forms Summer School, Lens, 2000 /

The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the renewal of the theory by Pfister in the 1960's. Recently, more refined geomet...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Izhboldin, Oleg T. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Kahn, Bruno (http://id.loc.gov/vocabulary/relators/aut), Karpenko, Nikita A. (http://id.loc.gov/vocabulary/relators/aut), Vishik, Alexander (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Tignol, Jean-Pierre (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Lecture Notes in Mathematics, 1835
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Cohomologie non ramifiée des quadriques (B. Kahn)
  • Motives of Quadrics with Applications to the Theory of Quadratic Forms (A. Vishik)
  • Motives and Chow Groups of Quadrics with Applications to the u-invariant (N.A. Karpenko after O.T. Izhboldin)
  • Virtual Pfister Neigbors and First Witt Index (O.T. Izhboldin)
  • Some New Results Concerning Isotropy of Low-dimensional Forms (O.T. Izhboldin)
  • Izhboldin's Results on Stably Birational Equivalence of Quadrics (N.A. Karpenko)
  • My recollections about Oleg Izhboldin (A.S. Merkurjev).