Geometric Methods in the Algebraic Theory of Quadratic Forms Summer School, Lens, 2000 /
The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the renewal of the theory by Pfister in the 1960's. Recently, more refined geomet...
Κύριοι συγγραφείς: | , , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Άλλοι συγγραφείς: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2004.
|
Έκδοση: | 1st ed. 2004. |
Σειρά: | Lecture Notes in Mathematics,
1835 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Cohomologie non ramifiée des quadriques (B. Kahn)
- Motives of Quadrics with Applications to the Theory of Quadratic Forms (A. Vishik)
- Motives and Chow Groups of Quadrics with Applications to the u-invariant (N.A. Karpenko after O.T. Izhboldin)
- Virtual Pfister Neigbors and First Witt Index (O.T. Izhboldin)
- Some New Results Concerning Isotropy of Low-dimensional Forms (O.T. Izhboldin)
- Izhboldin's Results on Stably Birational Equivalence of Quadrics (N.A. Karpenko)
- My recollections about Oleg Izhboldin (A.S. Merkurjev).