Algorithmic Learning Theory 11th International Conference, ALT 2000 Sydney, Australia, December 11-13, 2000 Proceedings /
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2000.
|
Έκδοση: | 1st ed. 2000. |
Σειρά: | Lecture Notes in Artificial Intelligence ;
1968 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- INVITED LECTURES
- Extracting Information from the Web for Concept Learning and Collaborative Filtering
- The Divide-and-Conquer Manifesto
- Sequential Sampling Techniques for Algorithmic Learning Theory
- REGULAR CONTRIBUTIONS
- Towards an Algorithmic Statistics
- Minimum Message Length Grouping of Ordered Data
- Learning From Positive and Unlabeled Examples
- Learning Erasing Pattern Languages with Queries
- Learning Recursive Concepts with Anomalies
- Identification of Function Distinguishable Languages
- A Probabilistic Identification Result
- A New Framework for Discovering Knowledge from Two-Dimensional Structured Data Using Layout Formal Graph System
- Hypotheses Finding via Residue Hypotheses with the Resolution Principle
- Conceptual Classifications Guided by a Concept Hierarchy
- Learning Taxonomic Relation by Case-based Reasoning
- Average-Case Analysis of Classification Algorithms for Boolean Functions and Decision Trees
- Self-duality of Bounded Monotone Boolean Functions and Related Problems
- Sharper Bounds for the Hardness of Prototype and Feature Selection
- On the Hardness of Learning Acyclic Conjunctive Queries
- Dynamic Hand Gesture Recognition Based On Randomized Self-Organizing Map Algorithm
- On Approximate Learning by Multi-layered Feedforward Circuits
- The Last-Step Minimax Algorithm
- Rough Sets and Ordinal Classification
- A note on the generalization performance of kernel classifiers with margin
- On the Noise Model of Support Vector Machines Regression
- Computationally Efficient Transductive Machines.