Medical Image Understanding Technology Artificial Intelligence and Soft-Computing for Image Understanding /

A detailed description of a new approach to perceptual analysis and processing of medical images is given. Instead of traditional pattern recognition a new method of image analysis is presented, based on a syntactic description of the shapes selected on the image and graph-grammar parsing algorithms...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tadeusiewicz, Ryszard (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Studies in Fuzziness and Soft Computing, 156
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05104nam a2200601 4500
001 978-3-540-40997-7
003 DE-He213
005 20191022093105.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540409977  |9 978-3-540-40997-7 
024 7 |a 10.1007/978-3-540-40997-7  |2 doi 
040 |d GrThAP 
050 4 |a RC1-1245 
072 7 |a MJ  |2 bicssc 
072 7 |a MED045000  |2 bisacsh 
072 7 |a MJ  |2 thema 
082 0 4 |a 616  |2 23 
100 1 |a Tadeusiewicz, Ryszard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Medical Image Understanding Technology  |h [electronic resource] :  |b Artificial Intelligence and Soft-Computing for Image Understanding /  |c by Ryszard Tadeusiewicz. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a VII, 156 p. 133 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 156 
505 0 |a 1. What is Image Understanding Technology and why do we need it? -- 1.1 Methods of Medical Image Acquisition -- 1.2. Analysis and interpretation of medical images -- 1.3. What new values can add to this scheme 'automatic understanding' ? -- 1.4. Areas of applications for the automatic understanding of images -- 2. A General Description of the Fundamental Ideas Behind Automatic Image Understanding -- 2.1. Fundamental assumptions -- 2.2. What does image understanding mean? -- 2.3. Linguistic description of images -- 2.4. The use of graph grammar to cognitive resonance -- 3. Formal Bases for the Semantic Approach to Medical Image Processing Leading to Image Understanding Technology -- 3.1 Fundamentals of syntactic pattern recognition methods -- 3.2 Characteristic features and advantages of structural approaches to medical image semantic analysis -- 4. Examples of Structural Pattern Analysis and Medical Image Understanding Application to Medical Diagnosis -- 4.1. Introduction -- 4.2. Pre-processing Methods Designed to Process Selected Medical Images -- 4.3. Making Lexical Elements for the Syntactic Descriptions of Examined structures -- 4.4. Structural Analysis of Coronary Vessels -- 4.4.1 Syntactic Analysis and Diagnosing Coronary Artery Stenoses -- 4.5. Structural Analysis and Understanding of Lesions in Urinary Tract -- 4.6. Syntactic Methods Supporting the Diagnosis of Pancreatitis and Pancreas Neoplasm -- 4.9. Conclusions -- 5. The application of the Image Understanding Technology to Semantic Organisation and Content-Based Searching in Multimedia Medical Data Bases -- 6. Strengths and Weaknesses of the Image Understanding Technology Compared to Previously Known Approaches -- References. 
520 |a A detailed description of a new approach to perceptual analysis and processing of medical images is given. Instead of traditional pattern recognition a new method of image analysis is presented, based on a syntactic description of the shapes selected on the image and graph-grammar parsing algorithms. This method of "Image Understanding" can be found as a model of mans' cognitive image understanding processes. The usefulness for the automatic understanding of the merit of medical images is demonstrated as well as the ability for giving useful diagnostic descriptions of the illnesses. As an application, the production of a content-based, automatically generated index for arranging and for searching medical images in multimedia medical databases is presented. 
650 0 |a Internal medicine. 
650 0 |a Artificial intelligence. 
650 0 |a Biomedical engineering. 
650 0 |a Pattern recognition. 
650 0 |a Biomathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Internal Medicine.  |0 http://scigraph.springernature.com/things/product-market-codes/H33002 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Biomedical Engineering and Bioengineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T2700X 
650 2 4 |a Pattern Recognition.  |0 http://scigraph.springernature.com/things/product-market-codes/I2203X 
650 2 4 |a Physiological, Cellular and Medical Topics.  |0 http://scigraph.springernature.com/things/product-market-codes/M31020 
650 2 4 |a Mathematical and Computational Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/T11006 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642535789 
776 0 8 |i Printed edition:  |z 9783540219859 
776 0 8 |i Printed edition:  |z 9783642535772 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 156 
856 4 0 |u https://doi.org/10.1007/978-3-540-40997-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)