Photonic Analog-to-Digital Conversion
Photonic-based A/D conversion has received and continues to receive considerable attention as an alternative approach to providing enhanced resolution and speed in high-performance applications. Some of the potential advantages of using pho- tonic technologies are high-speed clocking, broadband sam-...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2001.
|
Έκδοση: | 1st ed. 2001. |
Σειρά: | Springer Series in Optical Sciences,
81 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. Introduction
- 1.1 The Role of A/D Conversion
- 1.2 Key Technological Challenges
- 1.3 Motivation for Photonic A/D Approaches
- 1.4 Organization of this Book
- 2. Performance Characteristics of Analog-to-Digital Converters
- 2.1 A/D Converter Characteristics
- 2.2 Sampling and Conversion Rate Characteristics
- 2.3 Performance Measures
- 2.4 Performance Degradations
- 2.16 Aperture Jitter
- Summary
- 3. Approaches to Analog-to-Digital Conversion
- 3.1 A/D Converter Coding Schemes
- 3.2 Nyquist-Rate Converter Architectures
- 3.3 Oversampled A/D Conversion
- 3.4 Parallel Oversampling A/D Conversion
- Summary
- 4. Photonic Devices for Analog-to-Digital Conversion
- 4.1 Mach-Zehnder Interferometers
- 4.2 Optical Waveguide Switches
- 4.3 Acousto-Optic Devices
- 4.4 Multiple Quantum Well Devices
- 4.5 Smart Pixel Technology
- Summary
- 5. Nyquist-Rate Photonic Analog-to-Digital Conversion
- 5.1 Electro-Optic A/D Conversion Based on a Mach-Zehnder Interferometer
- 5.2 Optical Folding-Flash A/D Converter
- 5.3 Matrix-Multiplication and Beam Deflection
- 5.4 Other Approaches to Photonic A/D Conversion
- Summary
- 6. Oversampled Photonic Analog-to-Digital Conversion
- 6.1 Oversampling Photonic A/D Conversion
- 6.2 Optical Oversampled Modulators
- 6.3 The Digital Postprocessor
- 6.4 Performance Analysis
- 6.5 Experimental Proof-of-Concept Photonic Modulator Demonstration
- Summary
- 7. Low Resolution, Two-Dimensional Analog-to-Digital Conversion: Digital Image Halftoning
- 7.1 Introduction
- 7.2 Approaches to Halftoning
- 7.3 The Error Diffusion Algorithm
- 7.4 Neural Network Formalism
- 7.5 The Error Diffusion Neural Network
- 7.6 Quantitative Performance Metrics
- 7.7 Performance Analysis
- 7.8 Extensions to Color
- Summary
- 8. A Photonic-Based Error Diffusion Neural Network
- 8.1 First-Generation CMOS-SEED Error Diffusion Neural Array
- 8.2 Second-Generation CMOS-SEED Error Diffusion Neural Array
- 8.3 OPTOCHIP: A 2-D Neural Array Employing Epitaxy-on-Electronics
- 8.4 Extensions: A Photonic Error Diffusion Filter
- Summary
- 9. Photonic A/D Conversion Based on a Fully Connected Distributed Mesh Feedback Architecture
- 9.1 Temporal and Spatial Error Diffusion
- 9.2 Spatially Distributed Oversampled A/D Conversion.
- 9.3 A 2-D Fully Connected Distributed Mesh Feedback Architecture
- 9.4 A/D Conversion Using Spatial Oversampling and Error Diffusion
- 9.5 Three-Dimensional Extensions
- Summary
- 10. Trends in Photonic Analog-to-Digital Conversion
- 10.1 Time-Interleaving A/D Converter Architectures
- 10.2 Photonic Channelized A/D Architectures
- 10.3 Time-Stretching Using Dispersive Optical Elements
- 10.4 Ultra-Fast Laser Sources with Low Jitter
- 10.5 Novel Optical Sampling Techniques
- 10.6 Broadband Optical Modulators and Switches
- Summary
- References.