Photonic Analog-to-Digital Conversion

Photonic-based A/D conversion has received and continues to receive considerable attention as an alternative approach to providing enhanced resolution and speed in high-performance applications. Some of the potential advantages of using pho- tonic technologies are high-speed clocking, broadband sam-...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Shoop, Barry L. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Springer Series in Optical Sciences, 81
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. Introduction
  • 1.1 The Role of A/D Conversion
  • 1.2 Key Technological Challenges
  • 1.3 Motivation for Photonic A/D Approaches
  • 1.4 Organization of this Book
  • 2. Performance Characteristics of Analog-to-Digital Converters
  • 2.1 A/D Converter Characteristics
  • 2.2 Sampling and Conversion Rate Characteristics
  • 2.3 Performance Measures
  • 2.4 Performance Degradations
  • 2.16 Aperture Jitter
  • Summary
  • 3. Approaches to Analog-to-Digital Conversion
  • 3.1 A/D Converter Coding Schemes
  • 3.2 Nyquist-Rate Converter Architectures
  • 3.3 Oversampled A/D Conversion
  • 3.4 Parallel Oversampling A/D Conversion
  • Summary
  • 4. Photonic Devices for Analog-to-Digital Conversion
  • 4.1 Mach-Zehnder Interferometers
  • 4.2 Optical Waveguide Switches
  • 4.3 Acousto-Optic Devices
  • 4.4 Multiple Quantum Well Devices
  • 4.5 Smart Pixel Technology
  • Summary
  • 5. Nyquist-Rate Photonic Analog-to-Digital Conversion
  • 5.1 Electro-Optic A/D Conversion Based on a Mach-Zehnder Interferometer
  • 5.2 Optical Folding-Flash A/D Converter
  • 5.3 Matrix-Multiplication and Beam Deflection
  • 5.4 Other Approaches to Photonic A/D Conversion
  • Summary
  • 6. Oversampled Photonic Analog-to-Digital Conversion
  • 6.1 Oversampling Photonic A/D Conversion
  • 6.2 Optical Oversampled Modulators
  • 6.3 The Digital Postprocessor
  • 6.4 Performance Analysis
  • 6.5 Experimental Proof-of-Concept Photonic Modulator Demonstration
  • Summary
  • 7. Low Resolution, Two-Dimensional Analog-to-Digital Conversion: Digital Image Halftoning
  • 7.1 Introduction
  • 7.2 Approaches to Halftoning
  • 7.3 The Error Diffusion Algorithm
  • 7.4 Neural Network Formalism
  • 7.5 The Error Diffusion Neural Network
  • 7.6 Quantitative Performance Metrics
  • 7.7 Performance Analysis
  • 7.8 Extensions to Color
  • Summary
  • 8. A Photonic-Based Error Diffusion Neural Network
  • 8.1 First-Generation CMOS-SEED Error Diffusion Neural Array
  • 8.2 Second-Generation CMOS-SEED Error Diffusion Neural Array
  • 8.3 OPTOCHIP: A 2-D Neural Array Employing Epitaxy-on-Electronics
  • 8.4 Extensions: A Photonic Error Diffusion Filter
  • Summary
  • 9. Photonic A/D Conversion Based on a Fully Connected Distributed Mesh Feedback Architecture
  • 9.1 Temporal and Spatial Error Diffusion
  • 9.2 Spatially Distributed Oversampled A/D Conversion.
  • 9.3 A 2-D Fully Connected Distributed Mesh Feedback Architecture
  • 9.4 A/D Conversion Using Spatial Oversampling and Error Diffusion
  • 9.5 Three-Dimensional Extensions
  • Summary
  • 10. Trends in Photonic Analog-to-Digital Conversion
  • 10.1 Time-Interleaving A/D Converter Architectures
  • 10.2 Photonic Channelized A/D Architectures
  • 10.3 Time-Stretching Using Dispersive Optical Elements
  • 10.4 Ultra-Fast Laser Sources with Low Jitter
  • 10.5 Novel Optical Sampling Techniques
  • 10.6 Broadband Optical Modulators and Switches
  • Summary
  • References.