Electrorheological Fluids: Modeling and Mathematical Theory

This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ruzicka, Michael (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Mathematics, 1748
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02946nam a2200505 4500
001 978-3-540-44427-5
003 DE-He213
005 20191024202243.0
007 cr nn 008mamaa
008 121227s2000 gw | s |||| 0|eng d
020 |a 9783540444275  |9 978-3-540-44427-5 
024 7 |a 10.1007/BFb0104029  |2 doi 
040 |d GrThAP 
050 4 |a TA357-359 
072 7 |a TGMF  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGMF  |2 thema 
082 0 4 |a 620.1064  |2 23 
100 1 |a Ruzicka, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Electrorheological Fluids: Modeling and Mathematical Theory  |h [electronic resource] /  |c by Michael Ruzicka. 
250 |a 1st ed. 2000. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2000. 
300 |a XIV, 178 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1748 
520 |a This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained. 
650 0 |a Fluid mechanics. 
650 0 |a Fluids. 
650 0 |a Partial differential equations. 
650 1 4 |a Engineering Fluid Dynamics.  |0 http://scigraph.springernature.com/things/product-market-codes/T15044 
650 2 4 |a Fluid- and Aerodynamics.  |0 http://scigraph.springernature.com/things/product-market-codes/P21026 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662191309 
776 0 8 |i Printed edition:  |z 9783540413851 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1748 
856 4 0 |u https://doi.org/10.1007/BFb0104029  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)