Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids

Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of...

Full description

Bibliographic Details
Main Authors: Fuchs, Martin (Author, http://id.loc.gov/vocabulary/relators/aut), Seregin, Gregory (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Edition:1st ed. 2000.
Series:Lecture Notes in Mathematics, 1749
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03394nam a2200565 4500
001 978-3-540-44442-8
003 DE-He213
005 20191024202503.0
007 cr nn 008mamaa
008 121227s2000 gw | s |||| 0|eng d
020 |a 9783540444428  |9 978-3-540-44442-8 
024 7 |a 10.1007/BFb0103751  |2 doi 
040 |d GrThAP 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Fuchs, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids  |h [electronic resource] /  |c by Martin Fuchs, Gregory Seregin. 
250 |a 1st ed. 2000. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2000. 
300 |a VIII, 276 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1749 
505 0 |a Weak solutions to boundary value problems in the deformation theory of perfect elastoplasticity -- Differentiability properties of weak solutions to boundary value problems in the deformation theory of plasticity -- Quasi-static fluids of generalized Newtonian type -- Fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening law. 
520 |a Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mechanics. 
650 0 |a Mathematical physics. 
650 0 |a Partial differential equations. 
650 1 4 |a Applications of Mathematics.  |0 http://scigraph.springernature.com/things/product-market-codes/M13003 
650 2 4 |a Classical Mechanics.  |0 http://scigraph.springernature.com/things/product-market-codes/P21018 
650 2 4 |a Theoretical, Mathematical and Computational Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/P19005 
650 2 4 |a Partial Differential Equations.  |0 http://scigraph.springernature.com/things/product-market-codes/M12155 
700 1 |a Seregin, Gregory.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540413974 
776 0 8 |i Printed edition:  |z 9783662202579 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1749 
856 4 0 |u https://doi.org/10.1007/BFb0103751  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)