The Geometry of Jordan and Lie Structures

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bertram, Wolfgang (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000.
Έκδοση:1st ed. 2000.
Σειρά:Lecture Notes in Mathematics, 1754
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02516nam a2200517 4500
001 978-3-540-44458-9
003 DE-He213
005 20191025091952.0
007 cr nn 008mamaa
008 121227s2000 gw | s |||| 0|eng d
020 |a 9783540444589  |9 978-3-540-44458-9 
024 7 |a 10.1007/b76884  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Bertram, Wolfgang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Geometry of Jordan and Lie Structures  |h [electronic resource] /  |c by Wolfgang Bertram. 
250 |a 1st ed. 2000. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2000. 
300 |a XVIII, 274 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1754 
505 0 |a The Jordan-Lie functor -- I: Symmetric spaces and the Lie-functor -- II: Prehomogeneous symmetric spaces and Jordan algebras -- III: The Jordan-Lie functor -- IV: The classical spaces -- V: Non-degenerate spaces -- Conformal group and global theory -- VI: Integration of Jordan structures -- VII: The conformal Lie algebra -- VIII: Conformal group and conformal completion -- IX: Liouville theorem and fundamental theorem -- X: Algebraic structures of symmetric spaces with twist -- XI: Spaces of the first and of the second kind -- XII: Tables -- XIII: Further topics. 
650 0 |a Algebra. 
650 0 |a Differential geometry. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Algebra.  |0 http://scigraph.springernature.com/things/product-market-codes/M11000 
650 2 4 |a Differential Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21022 
650 2 4 |a Topological Groups, Lie Groups.  |0 http://scigraph.springernature.com/things/product-market-codes/M11132 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662173176 
776 0 8 |i Printed edition:  |z 9783540414261 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1754 
856 4 0 |u https://doi.org/10.1007/b76884  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)