Set-Valued Force Laws Dynamics of Non-Smooth Systems /

As one of the oldest natural sciences, mechanics occupies a certain pioneering role in determining the development of exact sciences through its interaction with mathematics. As a matter of fact, there is hardly an area in mathematics that hasn't found an application of some form in mechanics....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Glocker, Christoph (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Lecture Notes in Applied and Computational Mechanics, 1
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. Introduction
  • 1.1 Friction Laws
  • 1.2 Literature Survey
  • 1.3 Subjects and Contents
  • 2. Fundamental Concepts
  • 2.1 Internal and External Forces
  • 2.2 The Law of Interaction
  • 2.3 The Dynamic Equilibrium
  • 2.4 The Virtual Work of a Dynamic System
  • 2.5 Resultant Force and Inertia Terms
  • 3. Rigid Body Systems
  • 3.1 Preliminaries on the Vector Product
  • 3.2 Rigid Body Kinematics
  • 3.3 Rigid Body Kinetics
  • 3.4 The Dynamic Equilibrium of a Rigid Body
  • 3.5 The Virtual Work of a Rigid Body System
  • 3.6 Classical Bilateral Constraints
  • 3.7 Generalized Coordinates
  • 4. Motion and Discontinuity Events
  • 4.1 Preliminaries on Integration of Functions
  • 4.2 Displacements, Velocities, and Accelerations
  • 4.3 Restriction to Finite Numbers of Discontinuities
  • 5. Displacement and Velocity Potentials
  • 5.1 Directional Newton-Euler Equations
  • 5.2 Set-Valued Force Laws
  • 5.3 Scalar Potential Functions
  • 5.4 On the Modeling of Force Laws
  • 6. Representation of Scalar Force Laws
  • 6.1 Decomposition into Unilateral Primitives
  • 6.2 Variational Formulations and Upper Subderivatives
  • 6.3 The Convex Case: Conjugate Potentials and Duality
  • 6.4 Force Elements in Engineering Dynamics
  • 7. Force Laws on Different Kinematic Levels
  • 7.1 Continuity Properties of the Trajectories
  • 7.2 Displacement Force Laws on Acceleration Level
  • 7.3 Velocity Force Laws on Acceleration Level
  • 8. Index Sets and LCP-Formulation
  • 8.1 Index Sets
  • 8.2 Formulation on Different Kinematic Levels
  • 8.3 The Linear Complementarity Problem
  • 8.4 The Dual Principle of Least Constraints
  • 9. Principles in Dynamics
  • 9.1 The Principle of Least Constraints
  • 9.2 The Principle of Gauß
  • 9.3 The Principle of Jourdain
  • 9.4 The Principle of d'Alembert/Lagrange
  • 9.5 Remarks on d'Alembert/Lagrange's Principle
  • 10. Spatial Coulomb Friction
  • 10.1 Geometry of Surfaces
  • 10.2 Contact Kinematics
  • 10.3 Kinetics
  • 10.4 Contact Laws
  • 10.5 Sliding Contacts
  • 10.6 Friction Pyramid for Rolling Contacts
  • 10.7 Friction Cones and NCP Formulations
  • 10.8 A Differentiable NCP for Rolling Contacts
  • 10.9 Example and Remarks
  • 11. Velocity Jumps due to C0-Constraints
  • 11.1 On Impacts in Mechanical Systems
  • 11.2 Mechanical Model and Problem
  • 11.3 Bilaterally Constrained Motion
  • 11.4 Velocity Jump by Time-Scaling
  • 11.5 Velocity Jump by Reflection
  • 11.6 Reflections and Collisions - Remarks
  • 12. Electropneumatic Drilling Machine
  • 12.1 Mechanical Model
  • 12.2 Simulations
  • 13. Percussion Drilling Machine
  • 13.1 Mechanical Model of the Drilling Machine
  • 13.2 Mathematical Model for Non-Contact
  • 13.3 The Contact Model
  • 13.4 State Transitions
  • 13.5 Results
  • 14. Turbine Blade Damper
  • 14.1 The Damper Model and the Non-Contact Case
  • 14.2 Contact Kinematics of the Damping Device
  • 14.3 Numerical Results
  • 15. Concluding Remarks
  • References.