Database Support for Data Mining Applications Discovering Knowledge with Inductive Queries /

Data mining from traditional relational databases as well as from non-traditional ones such as semi-structured data, Web data, and scientific databases housing biological, linguistic, and sensor data has recently become a popular way of discovering hidden knowledge. This book on database support for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Meo, Rosa (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Lanzi, Pier L. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Klemettinen, Mika (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Lecture Notes in Computer Science, 2682
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04240nam a2200541 4500
001 978-3-540-44497-8
003 DE-He213
005 20191025221610.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540444978  |9 978-3-540-44497-8 
024 7 |a 10.1007/b99016  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Database Support for Data Mining Applications  |h [electronic resource] :  |b Discovering Knowledge with Inductive Queries /  |c edited by Rosa Meo, Pier L. Lanzi, Mika Klemettinen. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a XII, 332 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2682 
505 0 |a Database Languages and Query Execution -- Inductive Databases and Multiple Uses of Frequent Itemsets: The cInQ Approach -- Query Languages Supporting Descriptive Rule Mining: A Comparative Study -- Declarative Data Mining Using SQL3 -- Towards a Logic Query Language for Data Mining -- A Data Mining Query Language for Knowledge Discovery in a Geographical Information System -- Towards Query Evaluation in Inductive Databases Using Version Spaces -- The GUHA Method, Data Preprocessing and Mining -- Constraint Based Mining of First Order Sequences in SeqLog -- Support for KDD-Process -- Interactivity, Scalability and Resource Control for Efficient KDD Support in DBMS -- Frequent Itemset Discovery with SQL Using Universal Quantification -- Deducing Bounds on the Support of Itemsets -- Model-Independent Bounding of the Supports of Boolean Formulae in Binary Data -- Condensed Representations for Sets of Mining Queries -- One-Sided Instance-Based Boundary Sets -- Domain Structures in Filtering Irrelevant Frequent Patterns -- Integrity Constraints over Association Rules. 
520 |a Data mining from traditional relational databases as well as from non-traditional ones such as semi-structured data, Web data, and scientific databases housing biological, linguistic, and sensor data has recently become a popular way of discovering hidden knowledge. This book on database support for data mining is developed to approaches exploiting the available database technology, declarative data mining, intelligent querying, and associated issues, such as optimization, indexing, query processing, languages, and constraints. Attention is also paid to the solution of data preprocessing problems, such as data cleaning, discretization, and sampling. The 16 reviewed full papers presented were carefully selected from various workshops and conferences to provide complete and competent coverage of the core issues. Some papers were developed within an EC funded project on discovering knowledge with inductive queries. 
650 0 |a Artificial intelligence. 
650 0 |a Database management. 
650 0 |a Information storage and retrieval. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Database Management.  |0 http://scigraph.springernature.com/things/product-market-codes/I18024 
650 2 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
700 1 |a Meo, Rosa.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Lanzi, Pier L.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Klemettinen, Mika.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662188934 
776 0 8 |i Printed edition:  |z 9783540224792 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 2682 
856 4 0 |u https://doi.org/10.1007/b99016  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)