Statistical Learning Theory and Stochastic Optimization Ecole d'Eté de Probabilités de Saint-Flour XXXI - 2001 /

Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Catoni, Olivier (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Picard, Jean (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Lecture Notes in Mathematics, 1851
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04091nam a2200625 4500
001 978-3-540-44507-4
003 DE-He213
005 20191026072357.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540445074  |9 978-3-540-44507-4 
024 7 |a 10.1007/b99352  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Catoni, Olivier.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Statistical Learning Theory and Stochastic Optimization  |h [electronic resource] :  |b Ecole d'Eté de Probabilités de Saint-Flour XXXI - 2001 /  |c by Olivier Catoni ; edited by Jean Picard. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a VIII, 284 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1851 
505 0 |a Universal Lossless Data Compression -- Links Between Data Compression and Statistical Estimation -- Non Cumulated Mean Risk -- Gibbs Estimators -- Randomized Estimators and Empirical Complexity -- Deviation Inequalities -- Markov Chains with Exponential Transitions -- References -- Index. 
520 |a Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Mathematical optimization. 
650 0 |a Artificial intelligence. 
650 0 |a Information theory. 
650 0 |a Numerical analysis. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
650 2 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26008 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Information and Communication, Circuits.  |0 http://scigraph.springernature.com/things/product-market-codes/M13038 
650 2 4 |a Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M14050 
700 1 |a Picard, Jean.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540225720 
776 0 8 |i Printed edition:  |z 9783662203248 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1851 
856 4 0 |u https://doi.org/10.1007/b99352  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)