Statistical Learning Theory and Stochastic Optimization Ecole d'Eté de Probabilités de Saint-Flour XXXI - 2001 /
Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in p...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Άλλοι συγγραφείς: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2004.
|
Έκδοση: | 1st ed. 2004. |
Σειρά: | Lecture Notes in Mathematics,
1851 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Universal Lossless Data Compression
- Links Between Data Compression and Statistical Estimation
- Non Cumulated Mean Risk
- Gibbs Estimators
- Randomized Estimators and Empirical Complexity
- Deviation Inequalities
- Markov Chains with Exponential Transitions
- References
- Index.