Introduction to Algebraic Independence Theory
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebrai...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2001.
|
Έκδοση: | 1st ed. 2001. |
Σειρά: | Lecture Notes in Mathematics,
1752 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- ?(?, z) and Transcendence
- Mahler's conjecture and other transcendence Results
- Algebraic independence for values of Ramanujan Functions
- Some remarks on proofs of algebraic independence
- Elimination multihomogene
- Diophantine geometry
- Géométrie diophantienne multiprojective
- Criteria for algebraic independence
- Upper bounds for (geometric) Hilbert functions
- Multiplicity estimates for solutions of algebraic differential equations
- Zero Estimates on Commutative Algebraic Groups
- Measures of algebraic independence for Mahler functions
- Algebraic Independence in Algebraic Groups. Part 1: Small Transcendence Degrees
- Algebraic Independence in Algebraic Groups. Part II: Large Transcendence Degrees
- Some metric results in Transcendental Numbers Theory
- The Hilbert Nullstellensatz, Inequalities for Polynomials, and Algebraic Independence.