Similarity Problems and Completely Bounded Maps

These notes revolve around three similarity problems, appearing in three different contexts, but all dealing with the space B(H) of all bounded operators on a complex Hilbert space H. The first one deals with group representations, the second one with C* -algebras and the third one with the disc alg...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pisier, Gilles (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:2nd ed. 2001.
Σειρά:Lecture Notes in Mathematics, 1618
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03516nam a2200505 4500
001 978-3-540-44563-0
003 DE-He213
005 20190618111518.0
007 cr nn 008mamaa
008 121227s2001 gw | s |||| 0|eng d
020 |a 9783540445630  |9 978-3-540-44563-0 
024 7 |a 10.1007/b55674  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
100 1 |a Pisier, Gilles.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Similarity Problems and Completely Bounded Maps  |h [electronic resource] /  |c by Gilles Pisier. 
246 3 |a Includes the solution to "The Halmos Problem" 
250 |a 2nd ed. 2001. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2001. 
300 |a VII, 202 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1618 
505 0 |a Introduction. Description of contents -- Von Neumann's inequality and Ando's generalization -- Non-unitarizable uniformly bounded group representations -- Completely bounded maps -- Completely bounded homomorphisms and derivations -- Schur multipliers and Grothendieck's inequality -- Hankelian Schur multipliers. Herz-Schur multipliers -- The similarity problem for cyclic homomorphisms on a C*-algebra -- Completely bounded maps in the Banach space setting -- The Sz -- Nagy-Halmos similarity problem -- The Kadison Similarity Problem -- References -- Subject Index -- Notation Index. 
520 |a These notes revolve around three similarity problems, appearing in three different contexts, but all dealing with the space B(H) of all bounded operators on a complex Hilbert space H. The first one deals with group representations, the second one with C* -algebras and the third one with the disc algebra. We describe them in detail in the introduction which follows. This volume is devoted to the background necessary to understand these three problems, to the solutions that are known in some special cases and to numerous related concepts, results, counterexamples or extensions which their investigation has generated. While the three problems seem different, it is possible to place them in a common framework using the key concept of "complete boundedness", which we present in detail. Using this notion, the three problems can all be formulated as asking whether "boundedness" implies "complete boundedness" for linear maps satisfying certain additional algebraic identities. Two chapters have been added on the HALMOS and KADISON similarity problems. 
650 0 |a Functional analysis. 
650 0 |a Harmonic analysis. 
650 1 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
650 2 4 |a Abstract Harmonic Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12015 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662195246 
776 0 8 |i Printed edition:  |z 9783540415244 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1618 
856 4 0 |u https://doi.org/10.1007/b55674  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)