Sequence Learning Paradigms, Algorithms, and Applications /

Sequential behavior is essential to intelligence in general and a fundamental part of human activities, ranging from reasoning to language, and from everyday skills to complex problem solving. Sequence learning is an important component of learning in many tasks and application fields: planning, rea...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Sun, Ron (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Giles, C.Lee (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Lecture Notes in Artificial Intelligence ; 1828
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04376nam a2200529 4500
001 978-3-540-44565-4
003 DE-He213
005 20191022131902.0
007 cr nn 008mamaa
008 121227s2001 gw | s |||| 0|eng d
020 |a 9783540445654  |9 978-3-540-44565-4 
024 7 |a 10.1007/3-540-44565-X  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Sequence Learning  |h [electronic resource] :  |b Paradigms, Algorithms, and Applications /  |c edited by Ron Sun, C.Lee Giles. 
250 |a 1st ed. 2001. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2001. 
300 |a XII, 396 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 1828 
505 0 |a to Sequence Learning -- to Sequence Learning -- Sequence Clustering and Learning with Markov Models -- Sequence Learning via Bayesian Clustering by Dynamics -- Using Dynamic Time Warping to Bootstrap HMM-Based Clustering of Time Series -- Sequence Prediction and Recognition with Neural Networks -- Anticipation Model for Sequential Learning of Complex Sequences -- Bidirectional Dynamics for Protein Secondary Structure Prediction -- Time in Connectionist Models -- On the Need for a Neural Abstract Machine -- Sequence Discovery with Symbolic Methods -- Sequence Mining in Categorical Domains: Algorithms and Applications -- Sequence Learning in the ACT-R Cognitive Architecture: Empirical Analysis of a Hybrid Model -- Sequential Decision Making -- Sequential Decision Making Based on Direct Search -- Automatic Segmentation of Sequences through Hierarchical Reinforcement Learning -- Hidden-Mode Markov Decision Processes for Nonstationary Sequential Decision Making -- Pricing in Agent Economies Using Neural Networks and Multi-agent Q-Learning -- Biologically Inspired Sequence Learning Models -- Multiple Forward Model Architecture for Sequence Processing -- Integration of Biologically Inspired Temporal Mechanisms into a Cortical Framework for Sequence Processing -- Attentive Learning of Sequential Handwriting Movements: A Neural Network Model. 
520 |a Sequential behavior is essential to intelligence in general and a fundamental part of human activities, ranging from reasoning to language, and from everyday skills to complex problem solving. Sequence learning is an important component of learning in many tasks and application fields: planning, reasoning, robotics natural language processing, speech recognition, adaptive control, time series prediction, financial engineering, DNA sequencing, and so on. This book presents coherently integrated chapters by leading authorities and assesses the state of the art in sequence learning by introducing essential models and algorithms and by examining a variety of applications. The book offers topical sections on sequence clustering and learning with Markov models, sequence prediction and recognition with neural networks, sequence discovery with symbolic methods, sequential decision making, biologically inspired sequence learning models. 
650 0 |a Artificial intelligence. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Computation by Abstract Devices.  |0 http://scigraph.springernature.com/things/product-market-codes/I16013 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
700 1 |a Sun, Ron.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Giles, C.Lee.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662186145 
776 0 8 |i Printed edition:  |z 9783540415978 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 1828 
856 4 0 |u https://doi.org/10.1007/3-540-44565-X  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)