Wave Propagation in Viscoelastic and Poroelastic Continua A Boundary Element Approach /

In this book, a numerical method to treat wave propagation problems in poroelastic and viscoelastic media is developed and evaluated. The method of choice is the Boundary Element Method (BEM) since this method implicitly fulfills the Sommerfeld radiation condition. The crucial point in any time-depe...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schanz, Martin (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Lecture Notes in Applied and Computational Mechanics, 2
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04302nam a2200517 4500
001 978-3-540-44575-3
003 DE-He213
005 20190710131517.0
007 cr nn 008mamaa
008 121204s2001 gw | s |||| 0|eng d
020 |a 9783540445753  |9 978-3-540-44575-3 
024 7 |a 10.1007/978-3-540-44575-3  |2 doi 
040 |d GrThAP 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a SCI096000  |2 bisacsh 
072 7 |a TGMD  |2 thema 
082 0 4 |a 531  |2 23 
100 1 |a Schanz, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Wave Propagation in Viscoelastic and Poroelastic Continua  |h [electronic resource] :  |b A Boundary Element Approach /  |c by Martin Schanz. 
250 |a 1st ed. 2001. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2001. 
300 |a X, 170 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 2 
505 0 |a 1. Introduction -- 2. Convolution quadrature method -- 2.1 Basic theory of the convolution quadrature method -- 2.2 Numerical tests -- 3. Viscoelastically supported Euler-Bernoulli beam -- 3.1 Integral equation for a beam resting on viscoelastic foundation -- 3.2 Numerical example -- 4. Time domain boundary element formulation -- 4.1 Integral equation for elastodynamics -- 4.2 Boundary element formulation for elastodynamics -- 4.3 Validation of proposed method: Wave propagation in a rod -- 5. Viscoelastodynamic boundary element formulation -- 5.1 Viscoelastic constitutive equation -- 5.2 Boundary integral equation -- 5.3 Boundary element formulation -- 5.4 Validation of the method and parameter study -- 6. Poroelastodynamic boundary element formulation -- 6.1 Biot's theory of poroelasticity -- 6.2 Fundamental solutions -- 6.3 Poroelastic Boundary Integral Formulation -- 6.4 Numerical studies -- 7. Wave propagation -- 7.1 Wave propagation in poroelastic one-dimensional column -- 7.2 Waves in half space -- 8. Conclusions - Applications -- 8.1 Summary -- 8.2 Outlook on further applications -- A. Mathematic preliminaries -- A.1 Distributions or generalized functions -- A.2 Convolution integrals -- A.3 Laplace transform -- A.4 Linear multistep method -- B. BEM details -- B.1 Fundamental solutions -- B.1.1 Visco- and elastodynamic fundamental solutions -- B.1.2 Poroelastodynamic fundamental solutions -- B.2 "Classical" time domain BE formulation -- Notation Index -- References. 
520 |a In this book, a numerical method to treat wave propagation problems in poroelastic and viscoelastic media is developed and evaluated. The method of choice is the Boundary Element Method (BEM) since this method implicitly fulfills the Sommerfeld radiation condition. The crucial point in any time-dependent BEM formulation finding time-dependent fundamental solutions is overcome employing the Convolution Quadrature Method. This quadrature rule makes it possible to establish a boundary element time-stepping procedure based on the known Laplace domain fundamental solutions for viscoelastic and poroelastic continua. Using this method, e.g., tremors produced by earthquakes or machines can be pre-calculated and subsequent buildings prevented from such disturbances. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Numerical analysis. 
650 1 4 |a Solid Mechanics.  |0 http://scigraph.springernature.com/things/product-market-codes/T15010 
650 2 4 |a Numerical Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M14050 
650 2 4 |a Classical Mechanics.  |0 http://scigraph.springernature.com/things/product-market-codes/P21018 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642074905 
776 0 8 |i Printed edition:  |z 9783540416326 
776 0 8 |i Printed edition:  |z 9783642536038 
830 0 |a Lecture Notes in Applied and Computational Mechanics,  |x 1613-7736 ;  |v 2 
856 4 0 |u https://doi.org/10.1007/978-3-540-44575-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)