Computational Learning Theory 14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT 2001, Amsterdam, The Netherlands, July 16-19, 2001, Proceedings /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Helmbold, David (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Williamson, Bob (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Lecture Notes in Artificial Intelligence ; 2111
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05166nam a2200541 4500
001 978-3-540-44581-4
003 DE-He213
005 20191026022637.0
007 cr nn 008mamaa
008 121227s2001 gw | s |||| 0|eng d
020 |a 9783540445814  |9 978-3-540-44581-4 
024 7 |a 10.1007/3-540-44581-1  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Computational Learning Theory  |h [electronic resource] :  |b 14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT 2001, Amsterdam, The Netherlands, July 16-19, 2001, Proceedings /  |c edited by David Helmbold, Bob Williamson. 
250 |a 1st ed. 2001. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2001. 
300 |a DCXLVIII, 638 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 2111 
505 0 |a How Many Queries Are Needed to Learn One Bit of Information? -- Radial Basis Function Neural Networks Have Superlinear VC Dimension -- Tracking a Small Set of Experts by Mixing Past Posteriors -- Potential-Based Algorithms in Online Prediction and Game Theory -- A Sequential Approximation Bound for Some Sample-Dependent Convex Optimization Problems with Applications in Learning -- Efficiently Approximating Weighted Sums with Exponentially Many Terms -- Ultraconservative Online Algorithms for Multiclass Problems -- Estimating a Boolean Perceptron from Its Average Satisfying Assignment: A Bound on the Precision Required -- Adaptive Strategies and Regret Minimization in Arbitrarily Varying Markov Environments -- Robust Learning - Rich and Poor -- On the Synthesis of Strategies Identifying Recursive Functions -- Intrinsic Complexity of Learning Geometrical Concepts from Positive Data -- Toward a Computational Theory of Data Acquisition and Truthing -- Discrete Prediction Games with Arbitrary Feedback and Loss (Extended Abstract) -- Rademacher and Gaussian Complexities: Risk Bounds and Structural Results -- Further Explanation of the Effectiveness of Voting Methods: The Game between Margins and Weights -- Geometric Methods in the Analysis of Glivenko-Cantelli Classes -- Learning Relatively Small Classes -- On Agnostic Learning with {0, *, 1}-Valued and Real-Valued Hypotheses -- When Can Two Unsupervised Learners Achieve PAC Separation? -- Strong Entropy Concentration, Game Theory, and Algorithmic Randomness -- Pattern Recognition and Density Estimation under the General i.i.d. Assumption -- A General Dimension for Exact Learning -- Data-Dependent Margin-Based Generalization Bounds for Classification -- Limitations of Learning via Embeddings in Euclidean Half-Spaces -- Estimating the Optimal Margins of Embeddings in Euclidean Half Spaces -- A Generalized Representer Theorem -- A Leave-One-out Cross Validation Bound for Kernel Methods with Applications in Learning -- Learning Additive Models Online with Fast Evaluating Kernels -- Geometric Bounds for Generalization in Boosting -- Smooth Boosting and Learning with Malicious Noise -- On Boosting with Optimal Poly-Bounded Distributions -- Agnostic Boosting -- A Theoretical Analysis of Query Selection for Collaborative Filtering -- On Using Extended Statistical Queries to Avoid Membership Queries -- Learning Monotone DNF from a Teacher That Almost Does Not Answer Membership Queries -- On Learning Monotone DNF under Product Distributions -- Learning Regular Sets with an Incomplete Membership Oracle -- Learning Rates for Q-Learning -- Optimizing Average Reward Using Discounted Rewards -- Bounds on Sample Size for Policy Evaluation in Markov Environments. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical logic. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 http://scigraph.springernature.com/things/product-market-codes/I16048 
650 2 4 |a Computation by Abstract Devices.  |0 http://scigraph.springernature.com/things/product-market-codes/I16013 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/I16021 
700 1 |a Helmbold, David.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Williamson, Bob.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662214053 
776 0 8 |i Printed edition:  |z 9783540423430 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 2111 
856 4 0 |u https://doi.org/10.1007/3-540-44581-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)