Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness

The usefulness of from the of techniques perturbation theory operators, to kernel for limit theorems for a applied quasi-compact positive Q, obtaining Markov chains for stochastic of or dynamical by describing properties systems, of Perron- Frobenius has been demonstrated in several All use a operat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hennion, Hubert (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Herve, Loic (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Lecture Notes in Mathematics, 1766
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • General Facts About The Method Purpose Of The Paper
  • The Central Limit Theorems For Markov Chains Theorems A, B, C
  • Quasi-Compact Operators of Diagonal Type And Their Perturbations
  • First Properties of Fourier Kernels Application
  • Peripheral Eigenvalues of Fourier Kernels
  • Proofs Of Theorems A, B, C
  • Renewal Theorem For Markov Chains Theorem D
  • Large Deviations For Markov Chains Theorem E
  • Ergodic Properties For Markov Chains
  • Markov Chains Associated With Lipschitz Kernels Examples
  • Stochastic Properties Of Dynamical Systems Theorems A*, B*, C*, D*, E*
  • Expanding Maps
  • Proofs Of Some Statements In Probability Theory
  • Functional Analysis Results On Quasi-Compactness
  • Generalization To The Non-Ergodic Case.