Advances in Learning Classifier Systems Third International Workshop, IWLCS 2000, Paris, France, September 15-16, 2000. Revised Papers /

Learning classi er systems are rule-based systems that exploit evolutionary c- putation and reinforcement learning to solve di cult problems. They were - troduced in 1978 by John H. Holland, the father of genetic algorithms, and since then they have been applied to domains as diverse as autonomous r...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lanzi, Pier L. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Stolzmann, Wolfgang (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt), Wilson, Stewart W. (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2001.
Έκδοση:1st ed. 2001.
Σειρά:Lecture Notes in Artificial Intelligence ; 1996
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04563nam a2200553 4500
001 978-3-540-44640-8
003 DE-He213
005 20191021192945.0
007 cr nn 008mamaa
008 121227s2001 gw | s |||| 0|eng d
020 |a 9783540446408  |9 978-3-540-44640-8 
024 7 |a 10.1007/3-540-44640-0  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Advances in Learning Classifier Systems  |h [electronic resource] :  |b Third International Workshop, IWLCS 2000, Paris, France, September 15-16, 2000. Revised Papers /  |c edited by Pier L. Lanzi, Wolfgang Stolzmann, Stewart W. Wilson. 
250 |a 1st ed. 2001. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2001. 
300 |a VIII, 280 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 1996 
505 0 |a Theory -- An Artificial Economy of Post Production Systems -- Simple Markov Models of the Genetic Algorithm in Classifier Systems: Accuracy-Based Fitness -- Simple Markov Models of the Genetic Algorithm in Classifier Systems: Multi-step Tasks -- Probability-Enhanced Predictions in the Anticipatory Classifier System -- YACS: Combining Dynamic Programming with Generalization in Classifier Systems -- A Self-Adaptive Classifier System -- What Makes a Problem Hard for XCS? -- Applications -- Applying a Learning Classifier System to Mining Explanatory and Predictive Models from a Large Clinical Database -- Strength and Money: An LCS Approach to Increasing Returns -- Using Classifier Systems as Adaptive Expert Systems for Control -- Mining Oblique Data with XCS -- Advanced Architectures -- A Study on the Evolution of Learning Classifier Systems -- Learning Classifier Systems Meet Multiagent Environments -- The Bibliography -- A Bigger Learning Classifier Systems Bibliography -- An Algorithmic Description of XCS. 
520 |a Learning classi er systems are rule-based systems that exploit evolutionary c- putation and reinforcement learning to solve di cult problems. They were - troduced in 1978 by John H. Holland, the father of genetic algorithms, and since then they have been applied to domains as diverse as autonomous robotics, trading agents, and data mining. At the Second International Workshop on Learning Classi er Systems (IWLCS 99), held July 13, 1999, in Orlando, Florida, active researchers reported on the then current state of learning classi er system research and highlighted some of the most promising research directions. The most interesting contri- tions to the meeting are included in the book Learning Classi er Systems: From Foundations to Applications, published as LNAI 1813 by Springer-Verlag. The following year, the Third International Workshop on Learning Classi er Systems (IWLCS 2000), held September 15{16 in Paris, gave participants the opportunity to discuss further advances in learning classi er systems. We have included in this volume revised and extended versions of thirteen of the papers presented at the workshop. 
650 0 |a Artificial intelligence. 
650 0 |a Computers. 
650 0 |a Mathematical logic. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Theory of Computation.  |0 http://scigraph.springernature.com/things/product-market-codes/I16005 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 http://scigraph.springernature.com/things/product-market-codes/I16048 
650 2 4 |a Computation by Abstract Devices.  |0 http://scigraph.springernature.com/things/product-market-codes/I16013 
700 1 |a Lanzi, Pier L.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Stolzmann, Wolfgang.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wilson, Stewart W.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662169148 
776 0 8 |i Printed edition:  |z 9783540424376 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 1996 
856 4 0 |u https://doi.org/10.1007/3-540-44640-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
912 |a ZDB-2-BAE 
950 |a Computer Science (Springer-11645)