Topology of Singular Fibers of Differentiable Maps

The volume develops a thorough theory of singular fibers of generic differentiable maps. This is the first work that establishes the foundational framework of the global study of singular differentiable maps of negative codimension from the viewpoint of differential topology. The book contains not o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Saeki, Osamu (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Lecture Notes in Mathematics, 1854
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03078nam a2200505 4500
001 978-3-540-44648-4
003 DE-He213
005 20191026052019.0
007 cr nn 008mamaa
008 121227s2004 gw | s |||| 0|eng d
020 |a 9783540446484  |9 978-3-540-44648-4 
024 7 |a 10.1007/b100393  |2 doi 
040 |d GrThAP 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBMS  |2 thema 
072 7 |a PBPH  |2 thema 
082 0 4 |a 514.34  |2 23 
100 1 |a Saeki, Osamu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Topology of Singular Fibers of Differentiable Maps  |h [electronic resource] /  |c by Osamu Saeki. 
250 |a 1st ed. 2004. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2004. 
300 |a X, 154 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1854 
505 0 |a Part I. Classification of Singular Fibers: Preliminaries; Singular Fibers of Morse Functions on Surfaces; Classification of Singular Fibers; Co-existence of Singular Fibers; Euler Characteristic of the Source 4-Manifold; Examples of Stable Maps of 4-Manifolds -- Part II. Universal Complex of Singular Fibers: Generalities; Universal Complex of Singular Fibers; Stable Maps of 4-Manifolds into 3-Manifolds; Co-orientable Singular Fibers; Homomorphism Induced by a Thom Map; Cobordism Invariance; Cobordism of Maps with Prescribed Local Singularities; Examples of Cobordism Invariants -- Part III. Epilogue: Applications; Further Developments; References; List of Symbols; Index. 
520 |a The volume develops a thorough theory of singular fibers of generic differentiable maps. This is the first work that establishes the foundational framework of the global study of singular differentiable maps of negative codimension from the viewpoint of differential topology. The book contains not only a general theory, but also some explicit examples together with a number of very concrete applications. This is a very interesting subject in differential topology, since it shows a beautiful interplay between the usual theory of singularities of differentiable maps and the geometric topology of manifolds. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Manifolds and Cell Complexes (incl. Diff.Topology).  |0 http://scigraph.springernature.com/things/product-market-codes/M28027 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540230212 
776 0 8 |i Printed edition:  |z 9783662201213 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1854 
856 4 0 |u https://doi.org/10.1007/b100393  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)